Accesso libero

Asymmetry models based on ordered score and separations of symmetry model for square contingency tables

  
24 giu 2021
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Agresti A. (1983): A simple diagonals-parameter symmetry and quasi-symmetry model. Statistics and Probability Letters 1: 313–316.10.1016/0167-7152(83)90051-2 Search in Google Scholar

Agresti A. (2002): Categorical Data Analysis, 2nd edition. Wiley, New York.10.1002/0471249688 Search in Google Scholar

Bagheban A.A., Zayeri,F. (2010): A generalization of the uniform association model for assessing rater agreement in ordinal scales. Journal of Applied Statistics 37: 1265–1273.10.1080/02664760903012666 Search in Google Scholar

Bishop Y.M.M., Fienberg S.E., Holland P.W. (1975): Discrete multivariate analysis: theory and practice. The MIT Press, Cambridge: Massachusetts. Search in Google Scholar

Bowker A.H. (1948): A test for symmetry in contingency tables. Journal of the American Statistical Association 43: 572–574.10.1080/01621459.1948.1048328418123073 Search in Google Scholar

Bross I.D.J. (1958): How to use ridit analysis. Biometrics 14: 18–38.10.2307/2527727 Search in Google Scholar

Graubard B.I., Korn E.L. (1987): Choice of column scores for testing independence in ordered 2 × K contingency tables. Biometrics 43: 471–476.10.2307/2531828 Search in Google Scholar

Iki K., Tahata K., Tomizawa S. (2009): Ridit score type quasi-symmetry and decomposition of symmetry for square contingency tables with ordered categories. Austrian Journal of Statistics 38: 183–192. Search in Google Scholar

Senn S. (2007): Drawbacks to noninteger scoring for ordered categorical data. Biometrics 63: 296–299.10.1111/j.1541-0420.2007.00739_1.x17447957 Search in Google Scholar

Tomizawa S. (1984): Three kinds of decompositions for the conditional symmetry model in a square contingency table. Journal of the Japan Statistical Society 14: 35–42. Search in Google Scholar

Tomizawa S. (1990): Another linear diagonals-parameter symmetry model for square contingency tables with ordered categories. South African Statistical Journal 24: 117–125. Search in Google Scholar

Tomizawa S., Miyamoto N., Iwamoto M. (2006): Linear column-parameter symmetry model for square contingency tables: Application to decayed teeth data. Biometrical Letters 43: 91–98. Search in Google Scholar

Yamamoto H., Iwashita T., Tomizawa S. (2007): Decomposition of symmetry into ordinal quasi-symmetry and marginal equimoment for multi-way tables. Austrian Journal of Statistics 36: 291–306. Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Scienze biologiche, Bioinformatica, Scienze della vita, altro, Matematica, Probabilità e statistiche, Matematica applicata