1. bookVolume 57 (2020): Edizione 1 (June 2020)
Dettagli della rivista
License
Formato
Rivista
eISSN
2199-577X
Prima pubblicazione
17 Aug 2013
Frequenza di pubblicazione
2 volte all'anno
Lingue
Inglese
access type Accesso libero

Generalized canonical correlation analysis for functional data

Pubblicato online: 12 Jun 2020
Volume & Edizione: Volume 57 (2020) - Edizione 1 (June 2020)
Pagine: 1 - 12
Dettagli della rivista
License
Formato
Rivista
eISSN
2199-577X
Prima pubblicazione
17 Aug 2013
Frequenza di pubblicazione
2 volte all'anno
Lingue
Inglese

Carroll, J.D. (1968a): Generalization of canonical correlation analysis to three or more sets of variables. Proceedings of the 76th Annual Convention of the American Psychological Association 3:227–228.10.1037/e473742008-115Search in Google Scholar

Carroll, J.D. (1968b): Equations and tables for a generalization of canonical correlation analysis to three or more sets of variables. Unpublished companion paper to Carroll (1968a).10.1037/e473742008-115Search in Google Scholar

Gower, J.C. (1989): Generalized canonical analysis. R. Coppi and S. Bolasco, Editors, Multiway Data Analysis. North Holland, Amsterdam, 221–232.Search in Google Scholar

Górecki, T., Krzyśko, M., Wołyński, W. (2017): Correlation analysis for multivariate functional data. Data Science, Studies in Classification, Data Analysis, and Knowledge Organization 243–258.10.1007/978-3-319-55723-6_19Search in Google Scholar

Górecki, T., Krzyśko, M., Waszak, Ł., Wołyński, W. (2018): Selected statistical methods of data analysis for multivariate functional data. Statistical Papers 59(1): 153–182.10.1007/s00362-016-0757-8Search in Google Scholar

Hotelling, H. (1936): Relations between two sets of variates. Biometrika 28(3/4): 321–377.10.1093/biomet/28.3-4.321Search in Google Scholar

Horváth, L., Kokoszka, P. (2012): Inference for Functional Data with Applications. Springer. New York.10.1007/978-1-4614-3655-3Search in Google Scholar

Hwang, H., Jung, K., Takane, Y., Woodward, T.S. (2012): Functional multiple-set canonical correlation analysis. Psychometrika 77(1): 48–64.10.1007/s11336-011-9234-4Search in Google Scholar

Hwang, H., Jung, K., Takane, Y., Woodward, T.S. (2013): A unified approach to multiple-set canonical correlation analysis and principal components analysis. British Journal of Mathematical and Statistical Psychology 66: 308–321.10.1111/j.2044-8317.2012.02052.x22616692Search in Google Scholar

Kettenring, J.R. (1971): Canonical analysis of several sets of variables. Biometrika 58(3): 433–451.10.1093/biomet/58.3.433Search in Google Scholar

Leurgans, S.E., Moyeed, R.A., Silverman, B.W. (1993): Canonical correlation analysis when the data are curves. Journal of the Royal Statistical Society. Series B 55(3): 725—740.10.1111/j.2517-6161.1993.tb01936.xSearch in Google Scholar

Löfstedt, T. Hadj-Selem, F., Guillemot, V., Philippe, C., Raymond, N., Duchesney, E., Frouin, V., Tenenhaus, A. (2018): A general multiblock method for structured variable selection. arXiv:1610.09490v1 [stat.ML]Search in Google Scholar

Markos, A., D’enza, A.I. (2016): Incremental generalized canonical correlation analysis. Analysis of Large and Complex Data, Studies in Classification, Data Analysis, and Knowledge Organization: 185–194.10.1007/978-3-319-25226-1_16Search in Google Scholar

Ramsay, J.O., Silverman, B.W. (2005): Functional Data Analysis, 2nd edition. Springer, New York.10.1007/b98888Search in Google Scholar

Ramsay, J.O. Wickham, H., Graves, S., Hooker, G. (2018): fda: Functional Data Analysis. R package version 2.4.8. https://CRAN.R-project.org/package=fdaSearch in Google Scholar

R Core Team (2019): R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/Search in Google Scholar

Takane, Y., Hwang, H., Abdi, H. (2008): Regularized multiple-set canonical correlation analysis. Psychometrika 73(4): 753–775.10.1007/s11336-008-9065-0Search in Google Scholar

Takane, Y., Oshima-Takane, Y. (2002): Nonlinear generalized canonical correlation analysis by neural network models. Measurement and Multivariate Analysis: 183–190.10.1007/978-4-431-65955-6_19Search in Google Scholar

Tenenhaus, A., Guillemot, V. (2017a): RGCCA: Regularized and Sparse Generalized Canonical Correlation Analysis for Multiblock Data. R package version 2.1.2. https://CRAN.R-project.org/package=RGCCASearch in Google Scholar

Tenenhaus, A., Philippe, C., Frouin, V. (2015): Kernel generalized canonical correlation analysis. Computational Statistics & Data Analysis 90(C): 114–131.10.1016/j.csda.2015.04.004Search in Google Scholar

Tenenhaus, A., Philippe, C., Guillemot, V., Le Cao, K.A., Grill, J., Frouin, V. (2014): Variable selection for generalized canonical correlation analysis. Biostatistics 15(3): 569–83.10.1093/biostatistics/kxu00124550197Search in Google Scholar

Tenenhaus, A., Tenenhaus, M. (2011): Regularized generalized canonical correlation analysis. Psychometrika 76(2): 257–284.10.1007/s11336-011-9206-8Search in Google Scholar

Tenenhaus, M., Tenenhaus, A., Groenen, P. (2017b): Regularized generalized canonical correlation analysis: A framework for sequential multiblock component methods. Psychometrika 82(3): 737–777.10.1007/s11336-017-9573-x28536930Search in Google Scholar

Van de Velden. M. (2011): On generalized canonical correlation analysis. Proc. 58th World Statistical Congress. Dublin, 758–765.Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo