INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Abraham A. (2005) Handbook of Measuring System Design: Artificial Neural Networks. Edited by P. H. Sydenham and Richard Thorn. Chichester, England: Wiley.10.1002/0471497398.mm421Search in Google Scholar

2. Akalan C., Robergs R., Kravitz L. (2008) Prediction of VO2max from an Individualized Submaximal Cycle Ergometer Protocol. J. Exerc. Physiol. Online, 11(2): 1–17.Search in Google Scholar

3. Akay F., Abut F. (2015) Machine Learning and Statistical Methods for the Prediction of Maximal Oxygen Uptake: Recent Advances. Medical Devices: Evidence and Research. DOI: 10.2147/MDER.S57281.10.2147/MDER.S57281455629826346869Search in Google Scholar

4. Akay F., Inan C., Bradshaw I.D., George J.D. (2009) Support Vector Regression and Multilayer Feed Forward Neural Networks for Non-Exercise Prediction of VO2max. Expert Syst. Appl., 36(6): 10112–10119. DOI: 10.1016/j.eswa.2009.01.009.10.1016/j.eswa.2009.01.009Search in Google Scholar

5. Al-Mallah, Mouaz H., Elshawi R., Ahmed A.M., Qureshi W.T., Brawner C.A., Blaha M.J., Ahmed H.M., Ehrman J.K., Keteyian S.J., Sakr S. (2017) Using Machine Learning to Define the Association between Cardiorespiratory Fitness and All-Cause Mortality (from the Henry Ford Exercise Testing Project). Am. J. Card., 120(11): 2078–2084. DOI: 10.1016/j.amjcard.2017.08.029.10.1016/j.amjcard.2017.08.02928951020Search in Google Scholar

6. American College of Sports Medicine, and Pescatello L.S. (2014) ACSM’s Guidelines for Exercise Testing and Prescription. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins.Search in Google Scholar

7. Astrand I. (1967) Aerobic Work Capacity: Its Relation to Age, Sex and Other Factors. Circulation Res., 211–217.Search in Google Scholar

8. Basset D. Howley E. (2000) Limiting Factors for Maximum Oxygen Uptake and Determinants of Endurance Performance. Med. Sci. Sports Exerc., 32 (1): 70–84.10.1097/00005768-200001000-0001210647532Search in Google Scholar

9. Beltrame T., Amelard R., Wong A., Hughson R.L. (2017) Prediction of Oxygen Uptake Dynamics by Machine Learning Analysis of Wearable Sensors during Activities of Daily Living. Sci. Rep., 7 (April): 45738. DOI: 10.1038/srep45738.10.1038/srep45738538111828378815Search in Google Scholar

10. Beltrame T., Amelard R., Villar R., Shafiee M.J., WongA., Hughson R.L. (2016) Estimating Oxygen Uptake and Energy Expenditure during Treadmill Walking by Neural Network Analysis of Easy-to-Obtain Inputs. J. Appl. Physiol., 121(5): 1226–1233. DOI: 10.1152/japplphysiol.00600.2016.10.1152/japplphysiol.00600.201627687561Search in Google Scholar

11. Beltrame T., Amelard R., Wong A., Hughson R.L. (2018) Extracting Aerobic System Dynamics during Unsupervised Activities of Daily Living Using Wearable Sensor Machine Learning Models. J. Appl. Physiol., 124(2): 473–481. DOI: 10.1152/japplphysiol.00299.2017.10.1152/japplphysiol.00299.2017586736728596271Search in Google Scholar

12. Blair S.N., Kampert J.B., Kohl H.W., Barlow C.E., Macera C.A., Paffenbarger R.S., Gibbons L.W. (1996) Influences of Cardiorespiratory Fitness and Other Precursors on Cardiovascular Disease and All-Cause Mortality in Men and Women. JAMA, 276(3): 205–210.10.1001/jama.1996.03540030039029Search in Google Scholar

13. Capostagno B., Lambert M.I., Lamberts R.P. (2016) A Systematic Review of Submaximal Cycle Tests to Predict, Monitor, and Optimize Cycling Performance. Int. J. Sports Physiol. Perf., 11(6): 707–714. DOI: 10.1123/ijspp.2016-0174.10.1123/ijspp.2016-017427701968Search in Google Scholar

14. Chilibeck P.D., Paterson D.H., Petrella R.J., Cunningham D.A. (1996) The Influence of Age and Cardiorespiratory Fitness on Kinetics of Oxygen Uptake. Can. J. Appl. Physiol., 21(3): 185–196.10.1139/h96-015Search in Google Scholar

15. Crouter S.E., Clowers K.G., Bassett D. (2006) A Novel Method for Using Accelerometer Data to Predict Energy Expenditure. J. Appl. Physiol., 100(4): 1324–1331. DOI: 10.1152/japplphysiol.00818.2005.10.1152/japplphysiol.00818.2005Search in Google Scholar

16. Ekelund L.G., Haskell W.L., Johnson J.L., Whaley F.S., Criqui M.H., Sheps D.S., (1988) Physical Fitness as a Predictor of Cardiovascular Mortality in Asymptomatic North American Men. N. Engl. J. Med., 319(21): 1379–1384. DOI: 10.1056/NEJM198811243192104.10.1056/NEJM198811243192104Search in Google Scholar

17. Erikssen G., Liestøl K., Bjørnholt J., Thaulow E., Sandvik L., Erikssen J. (1998) Changes in Physical Fitness and Changes in Mortality. Lancet, 352(9130): 759–762.10.1016/S0140-6736(98)02268-5Search in Google Scholar

18. Faul F., Erdfelder E, Lang A.G., Buchner A. (2007) G*Power 3: AFlexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. Behav. Res. Methods, 39(2): 175–191.10.3758/BF0319314617695343Search in Google Scholar

19. García-Massó X., Serra-Añó P., García-Raffi L., Sánchez-Pérez E., Giner-Pascual M., González L.M. (2014) Neural Network for Estimating Energy Expenditure in Paraplegics from Heart Rate. Int. J. Sports Med., 35(12): 1037–1043. DOI: 10.1055/s-0034-1368722.10.1055/s-0034-136872224886923Search in Google Scholar

20. Gavin H.P. (2017) The Levenberg-Marquardt Method for Nonlinear Least Squares Curve-Fitting Problems. Department of Civil and Environmental Engineering, Duke University.Search in Google Scholar

21. Guazzi M., Adams V., Conraads V., Halle M., Mezzani A., Vanhees L., Arena R., Fletcher G.F., Forman D.E., Kitzman D.W., Lavie C.J., Myers J. (2012) Clinical Recommendations for Cardiopulmonary Exercise Testing Data Assessment in Specific Patient Populations. Circulation, 126 (18): 2261–2274. DOI: 10.1161/CIR.0b013e31826fb946.10.1161/CIR.0b013e31826fb946477732522952317Search in Google Scholar

22. Gulati M., Black H.R., Shaw L.J., Arnsdorf M.F., Bairey Merz C.N., Lauer M.S., Marwick T.H., Pandey D.K., Wicklund R.H., Thisted R.A. (2005) The Prognostic Value of aNomogram for Exercise Capacity in Women. N. Engl. J. Med., 353(5): 468–75. DOI: 10.1056/NEJMoa044154.10.1056/NEJMoa04415416079370Search in Google Scholar

23. Hills A.P., Byrne N.M., Ramage A.J. (1998) Submaximal Markers of Exercise Intensity. J. Sports Sci., 16(sup1): 71–76. DOI: 10.1080/026404198366696.10.1080/02640419836669622587719Search in Google Scholar

24. Howley E., Bassett D., Welch H. (1995) Criteria for Maximal Oxygen Uptake: AReview and Commentary. Med. Sci. Sports Exerc., 27(9): 1292–1301.10.1249/00005768-199509000-00009Search in Google Scholar

25. Jamnick N.A., By S., Pettitt C.D., Pettitt R.W. (2016) Comparison of the YMCA and aCustom Submaximal Exercise Test for Determining VO2max. Med. Sci. Sports Exerc., 48(2): 254–259. DOI: 10.1249/MSS.0000000000000763.10.1249/MSS.000000000000076326339726Search in Google Scholar

26. Katch V., Weltman A, Sady S., Freedson P. (1978) Validity of the Relative Percent Concept for Equating Training Intensity. Eur. J. Appl. Physiol. Occup. Physiol., 39(4): 219–227.10.1007/BF00421445Search in Google Scholar

27. Kemps H.M.C., Schep G., Hoogsteen J., Thijssen E.J.M., De Vries W.R., Zonderland M.L., Doevendans P. (2009) Oxygen Uptake Kinetics in Chronic Heart Failure: Clinical and Physiological Aspects. Neth. Heart J., 17(6): 238–244.10.1007/BF03086254Search in Google Scholar

28. Lin C.W., Yang Y.T.C., Wang J.S., Yang Y.C. (2012) AWearable Sensor Module with aNeural-Network-Based Activity Classification Algorithm for Daily Energy Expenditure Estimation. IEEE Trans. Inf. Tech. Biomed., 16(5): 991–998. DOI: 10.1109/TITB.2012.2206602.10.1109/TITB.2012.2206602Search in Google Scholar

29. Liu Y., Starzyk J.A., Zhu Z. (2007) Optimizing Number of Hidden Neurons in Neural Networks. Artif. Intell. Appl., 138–143.Search in Google Scholar

30. Mann B.P., Khasawneh F.A., Fales R. (2011) Using Information to Generate Derivative Coordinates from Noisy Time Series. Commun. Nonlinear Sci. Numer. Simul., 16(8): 2999–3004. DOI: 10.1016/j.cnsns.2010.11.011.10.1016/j.cnsns.2010.11.011Search in Google Scholar

31. Mazzoleni M.J., Battaglini C.L., Martin K.J., Coffman E.M., Ekaidat J.A., Wood W.A., Mann B.P. (2017) A Dynamical Systems Approach for the Submaximal Prediction of Maximum Heart Rate and Maximal Oxygen Uptake. Sports Eng., 21(1): 31–41. DOI: 10.1007/s12283-017-0242-1.10.1007/s12283-017-0242-1Search in Google Scholar

32. Mazzoleni M.J., Battaglini C.L., Martin K.J., Coffman E.M., Wood W.A., Mann B.P. (2016) Modeling and Predicting Heart Rate Dynamics across a Broad Range of Transient Exercise Intensities during Cycling. Sports Eng., 19(2): 117–127. DOI: 10.1007/s12283-015-0193-3.10.1007/s12283-015-0193-3Search in Google Scholar

33. Morris M., Lamb K., Cotterrell D., Buckley J. (2009) Predicting Maximal Oxygen Uptake via a Perceptually Regulated Exercise Test (PRET) J. Exerc. Sci. Fit., 7 (2): 122–128.10.1016/S1728-869X(09)60015-0Search in Google Scholar

34. Myers J., Prakash M., Froelicher V., Do D., Partington S., Atwood J.A. (2002) Exercise Capacity and Mortality among Men Referred for Exercise Testing. N. Engl. J. Med., 346 (11): 793–801. DOI: 10.1056/NEJMoa011858.10.1056/NEJMoa01185811893790Search in Google Scholar

35. Nevill A.M., Cooke C. B. (2017) The Dangers of Estimating VO2max Using Linear, Nonexercise Prediction Models. Med. Sci. Sports Exerc., 49(5): 1036-1042. DOI: 10.1249/MSS.0000000000001178.10.1249/MSS.000000000000117827922463Search in Google Scholar

36. Plasqui G. Westerterp K.R. (2005) Accelerometry and Heart Rate as aMeasure of Physical Fitness: Proof of Concept: Med. Sci. Sports Exerc., 37(5): 872–76. DOI: 10.1249/01.MSS.0000161805.61893.C0.10.1249/01.MSS.0000161805.61893.C015870644Search in Google Scholar

37. Poole D.C., Jones A.M. (2012) Oxygen Uptake Kinetics. In Compr. Physiol., edited by Ronald Terjung. Hoboken, NJ, USA: John Wiley & Sons, Inc. DOI: wiley.com/10.1002/cphy.c100072.Search in Google Scholar

38. Robergs R.A., Landwehr R. (2002) The Surprising History of the ‘HRmax= 220-Age’ equation. J. Exerc. Physiol. Online, 5(2): 1–10.Search in Google Scholar

39. Ross R., Blair S.N., Arena R., Church R.S., Després J.P., Franklin B.A., Haskell W.L. (2016) Importance of Assessing Cardiorespiratory Fitness in Clinical Practice: ACase for Fitness as aClinical Vital Sign: AScientific Statement from the American Heart Association. Circulation, CIR–0000000000000461.10.1161/CIR.000000000000046127881567Search in Google Scholar

40. Rothney M.P., Neumann M., Béziat A., Chen K.Y. (2007) An Artificial Neural Network Model of Energy Expenditure Using Nonintegrated Acceleration Signals. J. Appl. Physiol., 103(4): 1419–1427. DOI: 10.1152/japplphysiol.00429.2007.10.1152/japplphysiol.00429.200717641221Search in Google Scholar

41. Ruch N., Joss F., Jimmy G., Melzer K., Hänggi J., Mäder U. (2013) Neural Network versus Activity-Specific Prediction Equations for Energy Expenditure Estimation in Children. J. Appl. Physiol., 115(9): 1229–1236. DOI: 10.1152/japplphysiol.01443.2012.10.1152/japplphysiol.01443.201223990244Search in Google Scholar

42. Sandvik L., Erikssen J., Thaulow E., Erikssen G., Mundal R., Rodahl K. (1993) Physical Fitness as a Predictor of Mortality among Healthy, Middle-Aged Norwegian Men. N. Engl. J. Med., 328(8): 533–537. DOI: 10.1056/NEJM199302253280803.10.1056/NEJM1993022532808038426620Search in Google Scholar

43. Snell P.G., Stray-Gundersen J., Levine B.D., Hawkins M.N., Raven P.B. (2007) Maximal Oxygen Uptake as aParametric Measure of Cardiorespiratory Capacity. Med. Sci. Sports Exerc., 39(1): 103–107. DOI: 10.1249/01.mss.0000241641.75101.64.10.1249/01.mss.0000241641.75101.6417095937Search in Google Scholar

44. Soares de Araújo C.G. Duarte C.V. (2015) Maximal Heart Rate in Young Adults: AFixed 188bpm Outperforms Values Predicted by aClassical Age-Based Equation. Int. J. Cardiol., 184: 609–610. DOI: 10.1016/j.ijcard.2015.02.043.10.1016/j.ijcard.2015.02.04325769008Search in Google Scholar

45. Staudenmayer J., Pober D., Crouter S., Bassett D., Freedson P. (2009) An Artificial Neural Network to Estimate Physical Activity Energy Expenditure and Identify Physical Activity Type from an Accelerometer. J. Appl. Physiol., 107(4): 1300–1307. DOI: 10.1152/japplphysiol.00465.2009.10.1152/japplphysiol.00465.2009276383519644028Search in Google Scholar

46. Stirling J., Zakynthinaki M., Saltin B. (2005) A Model of Oxygen Uptake Kinetics in Response to Exercise: Including aMeans of Calculating Oxygen Demand/Deficit/Debt. Bull. Math. Biol., 67(5): 989–1015. DOI: 10.1016/j.bulm.2004.12.005.10.1016/j.bulm.2004.12.00515998492Search in Google Scholar

47. Stirling J.R., Zakynthinaki M.S., Billat V. (2008) Modeling and Analysis of the Effect of Training on VO2 Kinetics and Anaerobic Capacity. Bull. Math. Bio., 70(5): 1348–1370. DOI: 10.1007/s11538-008-9302-9.10.1007/s11538-008-9302-918306003Search in Google Scholar

48. Stringer W., Hansen J., Wasserman K. (1997) Cardiac Output Estimated Noninvasively from Oxygen Uptake during Exercise. J. Appl. Physiol., 82(3): 908-912. DOI: 10.1152/jappl.1997.82.3.908.10.1152/jappl.1997.82.3.9089074981Search in Google Scholar

49. Swain D.P., Abernathy K.S., Smith C.S., Lee S.J., Bunn S.A. (1994) Target Heart Rates for the Development of Cardiorespiratory Fitness. Med. Sci. Sports. Exerc., 26(1): 112–116.10.1249/00005768-199401000-00019Search in Google Scholar

50. Wright S.P., Hall Brown T.S., Collier S.R., Sandberg K. (2017) How Consumer Physical Activity Monitors Could Transform Human Physiology Research. Am. J. Physiol. Regul. Integr. Comp. Physiol., 312(3): R358–367. DOI: 10.1152/ajpregu.00349.2016.10.1152/ajpregu.00349.2016540199728052867Search in Google Scholar

51. Yamaji K., Miyashita M., Shepharo R.J. (1978) Relationship between Heart Rate and Relative Oxygen Intake in Male Subjects Aged 10 to 27 Years. J. Hum. Ergol., 7 (1): 29–39.Search in Google Scholar

52. Yardley M., Havik O.E., Grov I., Relbo A., Gullestad L., Nytrøen K. (2016) Peak Oxygen Uptake and Self-Reported Physical Health Are Strong Predictors of Long-Term Survival after Heart Transplantation. Clin. Transplant., 30(2): 161–169. DOI: 10.1111/ctr.12672.10.1111/ctr.1267226589579Search in Google Scholar

53. Żołądź J.A., Duda K., Majerczak J. (1998) Oxygen Uptake Does Not Increase Linearly at High Power Outputs during Incremental Exercise Test in Humans. Eur. J. Appl. Physiol. Occup. Physiol., 77(5): 445–451.10.1007/s0042100503589562296Search in Google Scholar

eISSN:
2080-2234
Lingua:
Inglese
Frequenza di pubblicazione:
Volume Open
Argomenti della rivista:
Medicine, Basic Medical Science, other, Clinical Medicine, Public Health, Sports and Recreation, Physical Education