Accesso libero

Comparison of Different Methods for Identification of Dominant Oscillation Mode

B&H Electrical Engineering's Cover Image
B&H Electrical Engineering
Special Issue: Computational, Numerical and Mathematical Methods in Electrical Engineering
INFORMAZIONI SU QUESTO ARTICOLO

Cita

[1] M. Young, P. Markham, Y. Liu, Y. Ye, L. Chen, Y. Zhang, Y. Liu: Advanced Power System Monitoring, Modelling, and Control Applications using FNET, IFAC Proceedings Volumes, vol. 45, no. 16, pp. 1007-1012, ISSN 1474-6670, ISBN 9783902823069, https://doi.org/10.3182/20120711-3-BE-2027.00240, 201210.3182/20120711-3-BE-2027.00240 Search in Google Scholar

[2] http://fnetpublic.utk.edu/sample_events.html Search in Google Scholar

[3] F. Arrano-Vargas, C. Rahmann, F. Valencia, L. Vargas: Active Splitting in Longitudinal Power Systems based on a WAMPC, Energies, vol. 11, no. 1, pp. 1-19, Dec. 201710.3390/en11010051 Search in Google Scholar

[4] M.A. Pai, A. Stankovic: Robust Control in Power Systems, Springer, 2005 Search in Google Scholar

[5] J.F. Hauer, C.J. Demeure, L. L. Scharf: Initial results in Prony analysis of power system response signal, IEEE Trans Power Syst, vol. 5, pp. 80–9, 199010.1109/59.49090 Search in Google Scholar

[6] K.S. Shim, H.K. Nam, Y.C. Lim: Use of Prony analysis to extract sync information of low-frequency oscillation from measured data. Eur, Trans. Electr. Power, vol. 21, pp. 1746-1762, 201110.1002/etep.531 Search in Google Scholar

[7] K. Naoto, S. Masahiro, M. Tohru: Monitoring of inter-area oscillation mode by synchronized phasor measurement. IEEE Trans Power Syst, vol. 21, pp. 260–8, 200610.1109/TPWRS.2005.861960 Search in Google Scholar

[8] J.H. Choi, K.S. Shim, H.K. Nam, Y.C. Lim, S.R. Nam: Parameter estimation method of low frequency oscillating signals using discrete Fourier Transforms, Electr. Eng. Technol. vol. 7, no. 2, pp. 163–170, 201110.5370/JEET.2012.7.2.163 Search in Google Scholar

[9] Y. Yanzhu: Wide-area Situational Awareness Application Developments, PhD diss., University of Tennessee, 2011 Search in Google Scholar

[10] W. Trinh, K. Shetye, I. Idehen, T. Overbye: Iterative Matrix Pencil Method for Power System Modal Analysis, Proceedings of 52nd Hawaii International Conference on System Sciences, pp. 3669-3678, 2019 https://doi.org/10.24251/HICSS.2019.44310.24251/HICSS.2019.443 Search in Google Scholar

[11] R. Papia: Power system low frequency oscillation mode estimation using wide area measurement systems, Eng. Sci. Technol. Int. J.vol. 20, pp. 598-615, 201710.1016/j.jestch.2016.11.019 Search in Google Scholar

[12] S. Avdakovic, A. Nuhanovic, M. Kusljugic, E. Becirovic, M. Music: Identification of low frequency oscillations in power systems, Proceedings of the 6th International Conference on Electrical and Electronics Engineering, pp. 103–107, 2009 Search in Google Scholar

[13] P. Ray, R. K. Lenka, M. Biswal: Frequency mode identification using modified masking signal-based empirical mode decomposition, IET Generation, Transmission & Distribution, vol. 13, no. 8pp. 1266-1276, 23.4. 2019, doi: 10.1049/iet-gtd.2018.5527 Open DOISearch in Google Scholar

[14] M.M. Dedović, S. Avdaković: Identifications of Power System Dominant Low-Frequency Electromechanical Oscillations Using Hilbert Marginal Spectrum, Advanced Technologies, Systems, and Applications II. IAT 2017. Lecture Notes in Networks and Systems, Cham, vol. 28, Springer, 201810.1007/978-3-319-71321-2_17 Search in Google Scholar

[15] R. Smith, T. Tennille, G. Fields: Nuclear Plant Looses Electricity in Temblor, Wall Street Journal, 2011 Search in Google Scholar

[16] T. Hiyama, N. Suzuki, T. Funakoshi: On-line identification of power system oscillation modes by using real time FFT, IEEE Power Engineering Society Winter Meeting, vol. 2, pp. 1521–1526, 200010.1541/ieejpes1990.120.2_134 Search in Google Scholar

[17] D. Venkata Ratnam, A. Pasha, P. Swathi, M. Venu G. Rao: Acquisition of GPS L1 Signals using cooley-tukey FFT algorithm, IEEE Int. Conf. on Signal Processing, Computing and Control (ISPCC), pp. 1–4, 26-28 Sept. 201310.1109/ISPCC.2013.6663397 Search in Google Scholar

[18] J.W. Cooley, J.W. Tukey: An algorithm for the machine calculation of complex Fourier series, Math. Comput. vol. 19, no 90, pp. 297–301, 196510.1090/S0025-5718-1965-0178586-1 Search in Google Scholar

[19] S.A. Samad, A. Ragoub, M. Othman, Z.A.M. Shariff: Implementation of a high speed fast Fourier transform VLSI chip, Microelectron. J., Elsevier Sc, vol. 29, no. 11, pp. 881–887, 199810.1016/S0026-2692(98)00048-2 Search in Google Scholar

[20] B.F. Chao, F. Gilbert: Autoregressive estimation of complex eigenfrequencies in low frequency seismic spectra, Geophys. J. R. astr. Soc., vol. 63, pp 641–657, 198010.1111/j.1365-246X.1980.tb02643.x Search in Google Scholar

[21] M.K. Arpanahi, M. Kordi, R. Torkzadeh, H.H. Alhelou, P. Siano: An augmented Prony method for power system oscillation analysis using synchrophasor data. Energies, vol. 12, no. 1267, 2019, DOI: 10.3390/en12071267 Open DOISearch in Google Scholar

[22] K.N. Tasnim, M.T. Hasan, M.S. Reza: Empirical Mode Decomposition Based Prony’s Method for Fundamental and Harmonics Analysis of Power System, International Conference on Electrical, Computer and Communication Engineering (ECCE), Cox’sBazar, Bangladesh, pp. 1-6, 2019, doi: 10.1109/ECACE.2019.8679300 Open DOISearch in Google Scholar

[23] H. Qarib, H. Adeli: A comparative study of signal processing methods for structural health monitoring”, J. Vibroeng., vol. 18, no. 4, pp. 2186-2204, 2016, http://dx.doi.org/10.21595/jve.2016.17218.10.21595/jve.2016.17218 Search in Google Scholar

[24] H. Yingbo, K.S. Tapan: Matrix Pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise, IEEE Trans. Acoust. Speech Signal Process. vol. 38, no. 5, pp. 814–824, 199010.1109/29.56027 Search in Google Scholar

[25] K.S. Tapan, P. Odilon: Using the Matrix Pencil method to estimate the parameters of a sum of complex exponentials, IEEE Antennas Propag. Mag. vol. 37, no. 1, pp. 48–55, 199510.1109/74.370583 Search in Google Scholar

[26] G. Liu, S. Fomel, X. Chen: Time-frequency characterization of seismic data using local attributes. Geophysics, vol. 76, pp. 23–24, 200910.1190/geo2010-0185.1 Search in Google Scholar

[27] R.G. Stockwell, L. Mansinha, R.P. Lowe: Localization of the complex spectrum: The S transform, IEEE Transactions on Signal Processing, vol. 44, no. 4, pp. 998-1001, April 1996, doi: 10.1109/78.492555. Open DOISearch in Google Scholar

[28] R.G. Stockwell: Why use the S-Transform? AMS Pseudo-differential operators: Partial differential equations and time-frequency analysis vol. 52, pp. 279–309, 200710.1090/fic/052/12 Search in Google Scholar

[29] J. Xiaomo, M. Sankaran: Wavelet spectrum analysis approach to model validation of dynamic systems, Mechanical Systems and Signal Processing, Volume 25, Issue 2, pp. 575-590, 2011, ISSN 0888-3270, https://doi.org/10.1016/j.ymssp.2010.05.01210.1016/j.ymssp.2010.05.012 Search in Google Scholar

[30] Z. Qin, L. Chen, X. Bao: Continuous wavelet transform for non-stationary vibration detection with phase-OTDR, Opt. Express 20, pp. 20459-20465, 201210.1364/OE.20.02045923037094 Search in Google Scholar

[31] H.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.C. Yen, C.C. Tung, H.H. Liu: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A 454, pp. 903–995, 199510.1098/rspa.1998.0193 Search in Google Scholar

[32] M.M. Dedovic, S. Avdakovic, N. Dautbasic: Impact of Air Temperature On Active And Reactive Power Consumption - Sarajevo Case Study, Bosanskohercegovačka elektrotehnika, Volume. 11, January/December 2017 Search in Google Scholar

eISSN:
2566-3151
Lingua:
Inglese