Accesso libero

I-MASnBr3 /CZTGS Heterojunction Solar Cell Layer Optimization Investigated Using Scaps-1D Software Exhibited Excellent Performance at 50 %

INFORMAZIONI SU QUESTO ARTICOLO

Cita

R. M France, J. F. Geisz, T. Song, W. Olavarria, M. Young, A. Kibbler, A. Steiner. “Triple-junction solar cells with 39.5% terrestrial and 34.2% space efficiency enabled by thick quantum well superlattices”. Joule, 6(5) (2022) 1121–1135. https://doi.org/10.1016/j.joule.2022.04.024 Search in Google Scholar

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, Appl Phys Lett. (2007) “40% efficient metamorphic GaInPGaInAsGe multijunction solar cells”. Applied Physics Letters 90(18) (2007) 183516. https://doi.org/10.1063/1.2734507 Search in Google Scholar

S. Bhattarai1, M.K.A. Mohammed, J.Madan, R.Pandey, M.Z.Ansari, A.N.Z. Rashed, M.Amamiand, M.K. Hossain, Performance Improvement of Perovskite Solar Cell Design with Double Active Layer to Achieve an Efficiency of over 31%. Sustainability 15 (2023) 13955. https://doi.org/10.3390/su151813955 Search in Google Scholar

S. Bhattarai, R. Pandey, J. Madan, S. Tayeng, P. K. Kalita, M. Z. Ansari, L. Ben Farhat, M. Amamif, M.K. Hossain, “Comparative study of distinct halide composites for highly efficient perovskite solar cells using a SCAPS-1D simulator“, RSC Adv. 13 (2023) 26851. https://doi.org/10.1039/d3ra04134d Search in Google Scholar

G. Jie, C.R. Grice, Y. Yanfa, “Cu-based quaternary chalcogenide Cu2BaSnS4 thin films acting as hole transport layers in inverted perovskite CH3NH3PbI3 solar cells & quot” Mater. Chem. A 5 (2017) 2920-2928. http://dx.doi.org/10.1039/C6TA08426E Search in Google Scholar

J. Ge, Y. Yan, “Synthesis and characterization of photoelectrochemical and photovoltaic Cu2BaSnS4 thin films and solar cells”. Journal of Materials Chemistry C 5(26) (2017) 6406–6419. https://doi.org/10.1039/c7tc01678f Search in Google Scholar

R. Mannu, S.Padhy, U. P.Singh, “Output parametric optimization of CZTGS bilayer absorber layer: A numerical study“. Materials Today: Proceedings 67(V) (2022) 768-776, https://doi.org/10.1016/j.matpr.2022.07.302 Search in Google Scholar

R. Caballero, I. Victorov, R. Serna, J.M. Cano-Torres, C. Maffiotte, E. Garcia-Llamas, J.M. Merino, M. Valakh, I. Bodnar, M. Leo, “Band-gap engineering of Cu2ZnSn1xGexS4 single crystals and influence of the surface properties“. Acta Materialia 79 (2015), 181-187, https://doi.org/10.1016/j.solmat.2015.03.004 Search in Google Scholar

M. Singh, T. R. Rana, J.H. Kim, “Fabrication of band gap tuned Cu2Zn(Sn1-xGex)(S,Se)4 absorber thin film using nanocrystal-based ink in non-toxic solvent”. J. of Alloys and Compounds 675 (2016) 370. https://doi.org/10.1016/j.jallcom.2016.03.138 Search in Google Scholar

G. M. Ford, Q.Guo, R.Agrawal, H.W Hillhouse, “Earth abundant element Cu2Zn(Sn1-xGex)S4 nanocrystals for tunable band gap solar cells: 6.8% Efficient device Fabrication”. Chem Mater. 23(10) (2011) 2626. https://doi.org/10.1021/cm2002836 Search in Google Scholar

G. Chen, W. Wang, S. Chen, Z. Whang, Z. Huang, B. Zhang, X. Kong, “Bandgap engineering of Cu2ZnSn1-xGexS(e)4 by adjusting Sn-Ge ratios for almost full solar spectrum absorption”. J Alloys Compounds 718 (2017) 236–245. https://doi.org/10.1016/j.jallcom.2017.05.150 Search in Google Scholar

R. Scaffidi, G. Birant, G. Brammertz, J. de Wild, D. Flandre, B. Vermang, “Ge-alloyed kesterite thin-film solar cells: previous investigations and current status – a comprehensive review”. J. Materials chemistry A 11(25) (2023) 13174–13194. https://doi.org/10.1039/D3TA01218B. Search in Google Scholar

C. Bernal, K. Yang, “First-principles hybrid functional study of the organic-inorganic perovskites CH3NH3SnBr3 and CH3NH3SnI3”. J. Phys. Chem. C 118(42) (2014) 24383–24388. https://doi.org/10.1021/jp509358f Search in Google Scholar

S.Bhattarai, P.K. Kalita, I. Hossain, A.S. Alsubaie, K.H. Mahmoud, M.Z. Ansari, P. Janicek, “P.Designing an Efficient Lead-Free Perovskite Solar Cell through a Computational” Method. Crystals 13 (2023) 1175. https://doi.org/10.3390/cryst13081175 Search in Google Scholar

S. Bhattarai, R. Pandey, J. Madan, D. Muchahary, D. Gogoi, “A novel graded approach for improving the efficiency of Lead-Free perovskite solar cells”. Solar Energy 244 (2022) 255–263.https://doi.org/10.1016/J.SOLENER.2022.08.030 Search in Google Scholar

W. Fu, A.G. Ricciardulli, Q.A. Akkerman, R.A. John, M.M. Tavakoli, S. Essig, M.V. Kovalenko, M. Saliba, “Stability of perovskite materials and devices”. Materials Today 58 (2022) 275–296., https://doi.org/10.1016/J.MATTOD.2022.06.020 Search in Google Scholar

S. Foo, M. Thambidurai, K.P. Senthil, R. Yuvakkumar, Y. Huang, C. Dang. “Recent review on electron transport layers in perovskite solar cells”. Int. J. Energy Res. 46(15) (2022) 21441-21451. https://doi.org/10.1002/er.7958 Search in Google Scholar

K. Mahmood, S. Sarwar, M.T Mehran, Current status of electron transport layers in perovskite solar cells: materials and properties. RSC Advances, 7(28) (2017) 17044–17062. https://doi.org/10.1039/C7RA00002B Search in Google Scholar

B. Tan and Y. Wu, “Dye-Sensitized Solar Cells Based on Anatase TiO2 Nanoparticle/Nanowire Composites”, J. Phys. Chem. B 2006, 110, 32, 15932–15938 https://doi.org/10.1021/jp063972n Search in Google Scholar

B.H. Lee, M.Y. Song, S.Y. Jang, S.M. Jo, S.Y. Kwak, and D.Y. Kim, “Charge Transport Characteristics of High Efficiency Dye-Sensitized Solar Cells Based on Electrospun TiO2 Nanorod Photoelectrodes”, J. Phys. Chem. C 113(51) (2009) 21453–21457. https://doi.org/10.1021/jp907855x Search in Google Scholar

Z. Yu, I.R. Perera, T. Daeneke, S. Makuta, Y. Tachibana, J.J. Jasieniak, A. Mishra, P. Bäuerle, L. Spiccia, U. Bach, “Indium tin oxide as a semiconductor material in efficient p-type dye-sensitized solar cells”, NPG Asia Materials 8 (2016) e305 https://doi.org/10.1038/am.2016.89 Search in Google Scholar

M. Ghaleb, A. Arrar, Z.Touaa, “Optimization and Performance Analysis of a TiO2/i-CH3NH3SnBr3/CsPbI3/Al (BSF) Heterojunction Perovskite Solar Cell for Enhanced Efficiency”, ACS Omega 8(40) (2023) 37011-37022. https://doi.org/10.1021/acsomega.3c03891. Search in Google Scholar

M. Burgelman, P. Nollet and S. Degrave, “Modelling polycrystalline semiconductor solar Cells”, Thin Solid Films 361-362 (2000) 527-532. https://doi.org/10.1016/S0040-6090(99)00825-1. Search in Google Scholar

B. Z. Bhari, K.S. Rahman, P. Chelvanathan, M.A. Ibrahim, “Numerical Simulation of Ultrathin CdTe Solar Cell by SCAPS-1D”. IOP Conf. Ser. Mater. Sci. Eng. 1278(1) (2023), 012002. https://doi.org/10.1088/1757-899X/1278/1/012002. Search in Google Scholar

N.J. Valeti, K. Prakash, M. K. Singha, “Numerical simulation and optimization of lead free CH3NH3SnI3 perovskite solar cell with CuSbS2 as HTL using SCAPS 1D”. Results in Optics 12 (2023) 100440. https://doi.org/10.1016/j.rio.2023.100440 Search in Google Scholar

M.K. Hossain, M.H.K.Rubel, G.F.I. Toki, I. Alam, Md. F. Rahman, H. Bencherif, “Effect of various electron and hole transport layers on the performance of CsPbI3-based perovskite solar cells”. ArXiv :2211.02968. https://doi.org/10.48550/arXiv.2211.02968 Search in Google Scholar

Y. H. Khattak, F. Baig, H. Toura, S. Beg, & B. M. Soucase,” Efficiency enhancement of Cu2BaSnS4 experimental thin-film solar cell by device modeling”. J.Mat. Scien. 54(24) (2019) 14787–14796. https://doi.org/10.1007/S10853-019-03942-6/METRICS Search in Google Scholar

A. D. Adewoyin, M. A. Olopade, O. O. Oyebola, and M. A. Chendo, “Development of CZTGS/CZTS tandem thin film solar cell using SCAPS-1D”. Optik, 176 (2019) 132–142. https://doi.org/10.1016/J.IJLEO.2018.09.033 Search in Google Scholar

A. A. Abdelkadir, M. Sahal, E. Oublal, N. Kumar, A. Benami, “Performance enhancement investigations of the novel CZTGS thin-film solar cells”. Optical Materials, 133 (2022) 112969. https://doi.org/10.1016/j.optmat.2022.112969 Search in Google Scholar

Md.I. Samiul, K. Sobayel, A. Al-Kahtani, M.A. Islam, G. Muhammad, N. Amin, Md. Shahiduzzaman, M.Akhtaruzzaman,, “Defect Study and Modelling of SnX3-Based Perovskite Solar Cells with SCAPS-1D”. Nanomaterials 11 (2021) 1218. https://doi.org/10.3390/nano11051218 Search in Google Scholar

L.Lin, L.Jiang, P.Li, H.Xiong, Z. Kang,, B. Fan, Y.Qiu, “Simulated development and optimized performance of CsPbI3 based all-inorganic perovskite solar cells”. J Solar Energy, 198 (2020) 454-460, https://doi.org/10.1016/J.SOLENER.2020.01.081 Search in Google Scholar

M. K.Hossain, M.H.K. Rubel, G.F.I. Toki, I. Alam, M.F. Rahman, H. Bencherif, “Effect of Various Electron and Hole Transport Layers on the Performance of CsPbI3-Based Perovskite Solar Cells”: ACS Omega 7(47) (2022) 43210–43230. https://doi.org/10.1021/acsomega.2c05912. Search in Google Scholar

H.T. Ganem, A.N. Saleh, “Enhancement of the Efficiency of the CZTS/Cds/Zno/ITO Solar Cell By Back Reflection and Buffer Layers Using SCAPS -1D”. Iraqi Journal of Science, 62(4) (2021) 1144-1157. https://doi.org/10.24996/IJS.2021.62.4.11 Search in Google Scholar

M.K.Hossain, G.F.I. Toki, I. Alam, R. Pandey, D.P. Samajdar, M.F. Rahman, M.R. Islam, M.H.K. Rubel, H. Bencherif, J. Madan, M.K.A. Mohammed, ‘Numerical simulation and optimization of a CsPbI3-based perovskite solar cell to enhance the power conversion efficiency”, New J. Chem., 47 (2023) 4801-4817. https://doi.org/10.1039/D2NJ06206B Search in Google Scholar

A. Abdelkadir, M. Sahal, Theoretical development of the CZTS thin-film solar cell by SCAPS-1D software based on experimental work. Materials Science and Engineering: B 296 (2023) 116710. https://doi.org/10.1016/J.MSEB.2023.116710 Search in Google Scholar

U. Saha, A. Biswas, M.K. Alam, “Efficiency enhancement of CZTSe solar cell using CdS(n)/(AgxCu1–x)2ZnSnSe4 (p) /Cu2ZnSnSe4 (p+) structure”. Solar Energy 221 (2021) 314-322. https://doi.org/10.1016/J.SOLENER.2021.04.043 Search in Google Scholar

S. Dubey, J.N. Sarvaiya, B. Seshadri,” Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World – A Review”. Energy Procedia, 33 (2013) 311-321. https://doi.org/10.1016/J.EGYPRO.2013.05.072 Search in Google Scholar

Mamta, K.K. Maurya, V.N. Singh,” Enhancing the Performance of an Sb 2 Se 3 -Based Solar Cell by Dual Buffer Layer”, 13, Layer. Sustainability 13 (2021) 12320. https://doi.org/10.3390/su132112320 Search in Google Scholar

M. Lameirinhas, R.A., P. Correia V. Bernardo, C., N. Torres, J.P. et al, al. “Modelling the effect of defects and cracks in solar cells’. Scientific Reports 13 (2023) 12490. https://doi.org/10.1038/s41598-023-39769-0. Search in Google Scholar

F. Wang, S. Bai, W. Tress, A. Hagfeldt, F. Gao, “Defects engineering for high-performance perovskite solar cells”. npj Flexible Electronics 2 (2018) 22. https://doi.org/10.1038/s41528-018-0035-z Search in Google Scholar

W. Zhao, W. Zhou, X. Miao, 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), (2012) 502-505. https://doi.org/10.1109/NEMS.2012.6196826. Search in Google Scholar

P. Ci, X. Tian, J. Kang, A.Salazar, K. Eriguchi, S.Warkander, K. Tang, J. Liu, Y. Chen, S. Tongay, W. Walukiewicz, J. Miao, O. Dubon, J. Wu, “Chemical trends of deep levels in van der Waals semiconductors”. Nat. Commun. 11 (2020) 5373. https://doi.org/10.1038/s41467-020-19247-1 Search in Google Scholar

W. Walukiewicz, “Amphoteric native defects in semiconductors”. The Journal of Physical Chemistry Letters, 9(14) (2018) 3878-3885. https://doi.org/10.1063/1.101174 Search in Google Scholar

K. Cao, Y. Cheng, W. Zuo, B. Cai, Y. Wu, J. Zhu, Y. Zhu, H. Ning, Y. Shen, W. Shen, L. Liu, S. Chen, “Ionic compensation for defect reduction and enhanced performance of tin-based perovskite solar cells”. J power sources 558 (2023) 232595. https://doi.org/10.1016/J.JPOWSOUR.2022.232595 Search in Google Scholar

W.Walukiewicz, I. Rey-Stolle, G. Han, M. Jaquez, D. Broberg, W. Xie, M. Sherburne, N. Mathews, M. Asta, “Bistable Amphoteric Native Defect Model of Perovskite Photovoltaics”. J. Phys Chem Lett. 9 (2018) 3878-3885. https://doi.org/10.1021/acs.jpclett.8b01446 Search in Google Scholar

D. Ju, Y. Dang, Z. Zhu, H. Liu, C.C. Chueh, X. Li, L.Wang, X. Hu, A.K.Y. Jen, X. Tao, “Tunable Band Gap and Long Carrier Recombination Lifetime of Stable Mixed CH3NH3PbxSn1-xBr3 Single Crystals”.Chem Mater. 30(5) (2018) 1556–1565. https://doi.org/10.1021/acs.chemmater.7b04565 Search in Google Scholar

M.C. Naylor, D. Tiwari, A. Sheppard, J. Laverock., S, Campbell, B. Ford, X. Xu, M.D.K. Jones, Y. Qu, P. Maiello, V. Barrioz, N.S. Beattie, N.A. Fox, D.J. Fermin, G. Zoppi, “Ex situ Ge-doping of CZTS nanocrystals and CZTSSe solar absorber films.” Faraday Discussions 239 (2022) 70-84. https://doi.org/10.1039/d2fd00069e Search in Google Scholar

P. Punathil, E. Artegiani, S. Zanetti, L. Lozzi, V. Kumar, A. Romeo, “A simple method for Ge incorporation to enhance performance of low temperature and non- vacuum based CZTSSe solar cells”, Sol Energy 236 (2022) 599-607. https://doi.org/10.1016/j.solener.2022.03.027 Search in Google Scholar

C. Gao, Y. Sun, W. Yu, “Influence of Ge Incorporation from GeSe 2 Vapor on the Properties of Cu 2 ZnSn(S,Se) 4 Material and Solar Cells”, Coatings 8(9) (2018) 304. https://doi.org/10.3390/coatings8090304 Search in Google Scholar

L.K. Ono, S. Liu (Frank), Y. Qi, “Reducing Detrimental Defects for High-Performance Metal Halide Perovskite Solar Cells”. Angewandte Chemie International Edition 59(17) (2019) 6676-6698, https://doi.org/10.1002/anie.201905521. Search in Google Scholar

M. He, C. Yan, J. Li, M.P. Suryawanshi, J. Kim, M.A. Green, X. Hao, “Kesterite Solar Cells: Insights into Current Strategies and Challenges”, Adv. Sci. 8 (2021) 2004313. https://doi.org/10.1002%2Fadvs.202004313 Search in Google Scholar

J. Kumar, P. Srivastava, M. Bag,. “Advanced Strategies to Tailor the Nucleation and Crystal Growth in Hybrid Halide Perovskite Thin Films”. Solid Stat Chemis 10 (2022) 842924. https://doi.org/10.3389/fchem.2022.842924 Search in Google Scholar

M.A. Islam, M.N.B. Alamgir, S.I. Chowdhury, S.M.B. Billah, “Lead-free organic inorganic halide perovskite solar cell with over 30% efficiency”. Journal of Ovonic Research, 18(3) (2022) 395–409. https://doi.org/10.15251/JOR.2022.183.395. Search in Google Scholar

K. Fatema, M.S. Arefin, “Enhancing the efficiency of Pb-based and Sn-based perovskite solar cell by applying different ETL and HTL using SCAPS-ID. Optical Materials 125 (2022) 112036. https://doi.org/10.1016/J.OPTMAT.2022.112036. Search in Google Scholar

S. Essig; C. Allebé, T. Remo; J.F. Geisz; M.A. Steiner; K. Horowitz; L. Barraud; J.S. Ward; M. Schnabel; A. Descoeudres; et al. “Raising the one-sun conversion efficiency of III–V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions”. Nat.Energy 2 (2017) 17144. https://doi.org/10.1038/nenergy.2017.144. Search in Google Scholar

M.M. Salah, A. Zekry; A. Shaker; M. Abouelatta; M. Mousa; A. Saeed, “Investigation of Electron Transport Material-Free Perovskite/CIGS Tandem Solar Cell”. Energies 15 (2022) 6326. https://doi.org/10.3390/en15176326. Search in Google Scholar

A.D.K. Kenfack, N.M. Thantsha, M. Msimanga, “Simulation of Lead-Free Heterojunction CsGeI2Br/CsGeI3-Based Perovskite Solar Cell Using SCAPS-1D”. Solar 3(3) (2023) 458-472. https://doi.org/10.3390/SOLAR3030025. Search in Google Scholar

B. Saha, B.K. Mondal, S.K. Mostaque, M. Hossain, J. Hossain, “Numerical modeling of CuSbSe2-based dual-heterojunction thin film solar cell with CGS back surface layer”. AIP Advances 13 (2023) 025255. https://doi.org/10.1063/5.0133889 Search in Google Scholar

K.M. Katubi, N.S. Shiong, M.Z. Pakhuruddin, M.A. Alkhalayfeh, S.A. Abubaker, M.R. Al-Soeidat, “Over 35% efficiency of three absorber layers of perovskite solar cells using SCAPS 1-D”. Optik 297 (2024) 171579. https://doi.org/10.1016/J.IJLEO.2023.171579. Search in Google Scholar

M.H. Azar; S. Aynehband; H. Abdollahi; H. Alimohammadi; N. Rajabi; S. Angizi; V. Kamraninejad; R. Teimouri; R. Mohammadpour; A. Simchi, “SCAPS Empowered Machine Learning Modelling of Perovskite Solar Cells: Predictive Design of Active Layer and Hole Transport Materials”. Photonics 10 (2023) 271. https://doi.org/10.3390/photonics10030271 Search in Google Scholar

M.M. Salah, A. Zekry, A. Shaker, M. Abouelatta, M. Mousa, A. Saeed, “Investigation of Electron Transport Material-Free Perovskite/CIGS Tandem Solar Cell”. Energies 15(17) (2022) 6326. https://doi.org/10.3390/EN15176326 Search in Google Scholar

F. Baig, Y.H. Khattak, S. Ullah, B.M. Soucase, S. Beg, H. Ullah, Numerical analysis a guide to improve the efficiency of experimentally designed solar cell. Applied Physics A: Materials Science and Processing, 124(7) (2018), 1–8. https://doi.org/10.1007/S00339-018-1877-X Search in Google Scholar

A. Houimi, S.Y. Gezgin, B. Mercimek, H.Ş. Kılıç, “Numerical analysis of CZTS/n-Si solar cells using SCAPS-1D. A comparative study between experimental and calculated outputs.” Optical Materials 121 (2021) 111544. https://doi.org/10.1016/J.OPTMAT.2021.111544 Search in Google Scholar

eISSN:
2784-1057
Lingua:
Inglese