1. bookAHEAD OF PRINT
Dettagli della rivista
License
Formato
Rivista
eISSN
2784-1057
Prima pubblicazione
15 Dec 2012
Frequenza di pubblicazione
1 volta all'anno
Lingue
Inglese
access type Accesso libero

Theoretical Prediction of Mechanical Properties of BxAl1-XSb Ternary Semiconducting Alloys

Pubblicato online: 27 Apr 2022
Volume & Edizione: AHEAD OF PRINT
Pagine: -
Ricevuto: 03 Feb 2022
Accettato: 06 Apr 2022
Dettagli della rivista
License
Formato
Rivista
eISSN
2784-1057
Prima pubblicazione
15 Dec 2012
Frequenza di pubblicazione
1 volta all'anno
Lingue
Inglese
Abstract

The present work aims to predict the elastic constants and other significant properties of ordered BxAl1-xSb (0 ≤ x ≤ 1) ternary semiconducting alloys. We report the initial results of the elastic stiffness constants, the bulk modulus, the aggregate shear modulus, the Cauchy ratio, the aggregate Young’s modulus, the Born ratio, the isotropy factor, the fracture toughness and the longitudinal, transverse and average sound velocities. The Debye temperature and the melting point were also predicted using two different empirical expressions. Except the Cauchy ratio, which decreases with enhancing boron content x, all other physical quantities of BxAl1-xSb alloys increase gradually and monotonically with increasing of boron concentration x in the range 0-1.

Our obtained data for BSb and AlSb binary semiconducting compounds are discussed and analyzed in comparison with experimental and other theoretical values of the literature. Generally, our data for BSb and AlSb are in good agreement with other results reported previously in literature. Indeed, our obtained value (335.82 K) of the Debye temperature for AlSb compound overestimates the result (328.6 K) reported by Salehi et al. by around 2.03%, while that (1520 K) of the melting point for BSb overestimates the result (1500 K) reported recently by Bioud et al. by around 1.34%. Furthermore, to the best of our knowledge, no theoretical or experimental data were reported in the literature on the elastic constants and other properties for BxAl1-xSb alloys to compare with them.

Keywords

[1] H. Salehi, H. Badehian, M. Farbod, Mater. Sci. Semicond. Process., 26 (2014) 477.10.1016/j.mssp.2014.05.020 Search in Google Scholar

[2] S. Adachi, Properties of Group-IV, III-V and II-VI Semiconductors, John Wiley & Sons Ltd: (2005).10.1002/0470090340 Search in Google Scholar

[3] S. Daoud, P. K. Saini, H. Rekab-Djabri, J. Nano- Electron. Phys., 12 (2020) 06008.10.21272/jnep.12(6).06008 Search in Google Scholar

[4] M. Benchehima, H. Abid, A.C. Chaouche, and A. Resfa, Eur. Phys. J. Appl. Phys., 77 (2017) 30101.10.1051/epjap/2017160319 Search in Google Scholar

[5] V. Tiwari, I. Mal, S. K. Agnihotri, D. P. Samajdar, Mater. Sci. Semicond. Process., 122 (2021) 105505.10.1016/j.mssp.2020.105505 Search in Google Scholar

[6] S.N. Das, R. Bhunia, S. Hussain, R. Bhar, B.R. Chakraborty, A.K. Pal, Appl. Surf. Sci., 353 (2015) 439. Search in Google Scholar

[7] Y. Ge, W. Wan, X. Guo, Y. Liu, Opt. Express, 28 (2020) 238. Search in Google Scholar

[8] N. Bioud, X.W. Sun, S. Daoud, T. Song, Z.J. Liu, Mater. Res. Express., 5 (2018) 085904.10.1088/2053-1591/aad3a5 Search in Google Scholar

[9] V.P. Vassiliev, B. Legendre, V.P. Zlomanov, Intermetallics, 19 (2011) 1891.10.1016/j.intermet.2011.07.023 Search in Google Scholar

[10] S. Daoud, N. Bioud, N. Lebga, L. Belagraa, R. Mezouar, Indian J. Phys., 87 (2013) 355.10.1007/s12648-012-0231-y Search in Google Scholar

[11] D. Powell, Elasticity, lattice dynamics and parameterisation techniques for the Tersoff potential applied to elemental and type III-V semiconductors, Thesis of Doctor of Philosophy, University of Sheffield, South Yorkshire, England, (2006). Search in Google Scholar

[12] D. Powell, M.A Migliorato, A.G Cullis, Phys. Rev. B, 75 (2007) 115202.10.1103/PhysRevB.75.115202 Search in Google Scholar

[13] S. Daoud, J. Nano- Electron. Phys., 11 (2019) 05004. Search in Google Scholar

[14] J.K.D. Verma, B.D. Nag, P.S. Nair, Z. Naturforsch. A, 19 (1964) 1561.10.1515/zna-1964-1319 Search in Google Scholar

[15] T. Özer, Can. J. Phys., 98 (2020) 357. Search in Google Scholar

[16] C. Wang, S. Liang, J. Cui, X. Wang, Y. Wei, Vacuum, 169 (2019) 108844.10.1016/j.vacuum.2019.108844 Search in Google Scholar

[17] H. Rekab-Djabri, M. M. Abdus Salam, S. Daoud, M. Drief, Y. Guermit, S. Louhibi-Fasla, J. Magnes. Alloy., 8 (2020) 1166.10.1016/j.jma.2020.06.007 Search in Google Scholar

[18] S.Q. Wang, H.Q. Ye, Phys. Status Solidi B, 240 (2003) 45. Search in Google Scholar

[19] J. Zhang, J. M. McMahon, J. Mater. Sci., 56 (2021) 4266. Search in Google Scholar

[20] H. Niu, S. Niu, A.R. Oganov, J. Appl. Phys., 125 (2019) 065105. Search in Google Scholar

[21] S. Daoud, N. Bioud, N. Lebga, J. Optoelectron. Adv. Mater., 16 (2014) 207. Search in Google Scholar

[22] D. Varshney, G. Joshi, M. Varshney, S. Shriya, Phyica B, 405 (2010) 1663.10.1016/j.physb.2009.12.064 Search in Google Scholar

[23] A. Erkişi, Acta Phys. Pol. A, 140 (2021) 243. Search in Google Scholar

[24] P. K. Jha, M. Talati, Phys. Status Solidi B, 239 (2003) 291. Search in Google Scholar

[25] S. Daoud, N. Bouarissa, Theor. Chem. Accounts. 138 (2019) 49.10.1007/s00214-019-2439-9 Search in Google Scholar

[26] H. Rekab-Djabri, S. Daoud, M. M. Abdus Salam, S. Louhibi-Fasla, Acta Phys. Pol. A, 140 (2021) 34.10.12693/APhysPolA.140.34 Search in Google Scholar

[27] N. Bioud, X-W. Sun, S. Daoud, T. Song, R. Khenata, S. Bin Omran, Optik, 155 (2018) 17. Search in Google Scholar

[28] S. Daoud, N. Bouarissa, A. Benmakhlouf, O. Allaoui, Phys. Status Solidi B, 257 (2020) 1900537.10.1002/pssb.201900537 Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo