This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
V. Bergelson, A. Leibman, Distribution of values of bounded generalized polynomials, Acta Math. 198 (2007), no. 2, 155-230.Search in Google Scholar
J. W. S. Cassels, An Introduction to Diophantine Approximation, Cambridge Tracts in Mathematics and Mathematical Physics, no. 35, Cambridge University Press, 1957.Search in Google Scholar
A. Ciubotaru, Problema 27327, Gazeta MatematicȈa, Seria B, no. 1 (2017).Search in Google Scholar
B.Ćurgus, Wolfram Mathematica Explorations for Floor, Ceiling and the Space Between. https://faculty.curgus.wwu.edu/Papers/FloorCeiling.htmlSearch in Google Scholar
A. S. Fraenkel, Iterated floor function, algebraic numbers, discrete chaos, Beatty subsequences, semigroups, Trans. Amer. Math. Soc. 341, no. 2 (1994), 639-664.Search in Google Scholar
R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, 2nd ed., Addison-Wesley, 1994.Search in Google Scholar
T. Kulhanek, K. McDonough, V. Ponomarenko, Dilated floor functions that commute sometimes, PUMP J. Undergrad. Res. 2 (2019), 107-117.Search in Google Scholar
J. C. Lagarias, T. Murayama, D. H. Richman, Dilated floor functions that commute, Amer. Math. Monthly 123, no. 10 (2016), 1033-1038.Search in Google Scholar
J. C. Lagarias, D. H. Richman, Dilated floor functions having nonnegative commutator I. Positive and mixed sign dilations, Acta Arith. 187, no. 3 (2019), 271-299.Search in Google Scholar
J. C. Lagarias, D. H. Richman, Dilated floor functions having nonnegative commutator II. Negative dilations, Acta Arith. 196, no. 2 (2020), 163-186.Search in Google Scholar
G. Malajovich, E ective versions of Kronecker’s approximation theorem, 2001. https://dma.im.ufrj.br/gregorio/papers/kron.pdfSearch in Google Scholar
E. W. Weisstein, Kronecker’s Approximation Theorem, From MathWorld–A Wolfram Web Resource. https://mathworld.wolfram.com/KroneckersApproximationTheorem.htmlSearch in Google Scholar