Accesso libero

Weak and strong convergence theorems for the Krasnoselskij iterative algorithm in the class of enriched strictly pseudocontractive operators

  
30 apr 2020
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

[1] V. Berinde, Approximating fixed points of Lipschitzian generalized pseudo-contractions, in: Mathematics & Mathematics education (Bethlehem, 2000), World Sci. Publ., River Edge, NJ, 2002, 73-81.10.1142/9789812778390_0006Search in Google Scholar

[2] V. Berinde, Iterative approximation of fixed points for pseudo-contractive operators, Semin. Fixed Point Theory Cluj-Napoca3 (2002), 209-215.Search in Google Scholar

[3] V. Berinde, Iterative approximation of fixed points, Second edition. Lecture Notes in Mathematics. 1912, Springer, 2007.10.1109/SYNASC.2007.49Search in Google Scholar

[4] V. Berinde, Approximating fixed points of enriched nonexpansive mappings by Krasnoselskij iteration in Hilbert spaces, Carpathian J. Math.35 (2019), 293-304.10.37193/CJM.2019.03.04Search in Google Scholar

[5] V. Berinde, Iterative approximation of fixed points of enriched quasi-nonexpansive mappings and applications, (submitted).Search in Google Scholar

[6] V. Berinde, Approximating fixed points of enriched demicontractive mappings by Krasnoselskij-Mann iteration in Hilbert spaces, (submitted).Search in Google Scholar

[7] V. Berinde, Approximating fixed points of enriched nonexpansive mappings by Krasnoselskij-Mann iteration in Banach spaces, (submitted).Search in Google Scholar

[8] V. Berinde, M. Păcurar, Fixed point theorems of Kannan type mappings with applications to split feasibility and variational inequality problems, (submitted).Search in Google Scholar

[9] V. Berinde, M. Păcurar, Approximating fixed points of enriched contractions in Banach spaces, (submitted).Search in Google Scholar

[10] V. Berinde, M. Păcurar, Approximating fixed points of enriched Chatterjea type mappings, (submitted).Search in Google Scholar

[11] V. Berinde, M. Petric, Fixed point theorems for cyclic non-self single-valued almost contractions, Carpathian J. Math.31 (2015), 289-296.10.37193/CJM.2015.03.04Search in Google Scholar

[12] V. Berinde, A. R. Khan, M. Păcurar, Coupled solutions for a bivariate weakly nonexpansive operator by iterations, Fixed Point Theory Appl. (2014), 12 pp.10.1186/1687-1812-2014-149Search in Google Scholar

[13] M. Bethke, Approximation of fixed points of strictly pseudocontractive operators (German), Wiss. Z. Pädagog. Hochsch. ”Liselotte Herrmann” Güstrow Math.-Natur. Fak.27 (1989), 263-270.Search in Google Scholar

[14] F. E. Browder, W. V. Petryshyn, The solution by iteration of nonlinear functional equations in Banach spaces, Bull. Amer. Math. Soc.72 (1966), 571-575.10.1090/S0002-9904-1966-11544-6Search in Google Scholar

[15] F. E. Browder, W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl.20 (1967), 197-228.10.1016/0022-247X(67)90085-6Search in Google Scholar

[16] C. E. Chidume, Geometric properties of Banach spaces and nonlinear iterations, Lecture Notes in Mathematics, 1965, Springer, 2009.10.1007/978-1-84882-190-3Search in Google Scholar

[17] L. Deng, On Chidume’s open questions, J. Math. Anal. Appl.174 (1993), 441-449.10.1006/jmaa.1993.1129Search in Google Scholar

[18] H. Fukhar-ud-din, V. Berinde, Fixed point iterations for Prešić-Kannan nonexpansive mappings in product convex metric spaces, Acta Univ. Sapientiae Math.10 (2018), 56-69.10.2478/ausm-2018-0005Search in Google Scholar

[19] H. Fukhar-ud-din, V. Berinde, A. R. Khan, Fixed point approximation of Prešić nonexpansive mappings in product of CAT (0) spaces, Carpathian J. Math.32 (2016), 315-322.10.1186/s13663-015-0483-2Search in Google Scholar

[20] D. Göhde, Nichtexpansive und pseudokontraktive Abbildungen sternförmiger Mengen im Hilbertraum, Beiträge Anal.9 (1976), 23-25.Search in Google Scholar

[21] G. G. Johnson, Fixed points by mean value iterations, Proc. Amer. Math. Soc.34 (1972), 193-194.10.1090/S0002-9939-1972-0291918-4Search in Google Scholar

[22] A. Khan, A. H. Siddiqi, Nonexpansive type mappings in 2-pre-Hilbert spaces, Math. Sem. Notes Kobe Univ.11 (1983), 331-334.Search in Google Scholar

[23] M. A. Krasnosel’skiǐ, Two remarks about the method of successive approximations (Russian), Uspehi Mat. Nauk (N.S.)10 (1955), 123-127.Search in Google Scholar

[24] G. López, V. Martín-Márquez, H.-K. Xu, Halpern’s iteration for nonexpansive mappings, Nonlinear analysis and optimization I. Nonlinear analysis513 (2010), 211-231.10.1090/conm/513/10085Search in Google Scholar

[25] G. Marino, H.-K. Xu, Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces, J. Math. Anal. Appl.329 (2007), 336-346.10.1016/j.jmaa.2006.06.055Search in Google Scholar

[26] J. J. Moloney, Some fixed point theorems, Glas. Mat. Ser. III24 (44) (1989), 59-76.Search in Google Scholar

[27] R. N. Mukherjee, T. Som, Construction of fixed points of strictly pseudocontractive mappings in a generalized Hilbert space and related applications, Indian J. Pure Appl. Math.15 (1984), 1183-1189.Search in Google Scholar

[28] M. O. Osilike, A. Udomene, Demiclosedness principle and convergence theorems for strictly pseudocontractive mappings of Browder-Petryshyn type, J. Math. Anal. Appl.256 (2001), 431-445.10.1006/jmaa.2000.7257Search in Google Scholar

[29] J. A. Park, Mann-iteration process for the fixed point of strictly pseudocontractive mapping in some Banach spaces, J. Korean Math. Soc.31 (1994), 333-337.Search in Google Scholar

[30] W. V. Petryshyn, Construction of fixed points of demicompact mappings in Hilbert space, J. Math. Anal. Appl.14 (1966), 276-284.10.1016/0022-247X(66)90027-8Search in Google Scholar

[31] S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl.67 (1979), 274-276.10.1016/0022-247X(79)90024-6Search in Google Scholar

[32] B. E. Rhoades, Fixed point iterations using infinite matrices, Trans. Amer. Math. Soc.196 (1974), 161-176.10.1090/S0002-9947-1974-0348565-1Search in Google Scholar

[33] J. Schu, Iterative construction of fixed points of strictly pseudocontractive mappings, Appl. Anal.40 (1991), 67-72.10.1080/00036819108839994Search in Google Scholar

[34] J. Schu, On a theorem of C. E. Chidume concerning the iterative approximation of fixed points, Math. Nachr.153 (1991), 313-319.10.1002/mana.19911530127Search in Google Scholar

[35] X. L. Weng, Fixed point iteration for local strictly pseudo-contractive mapping, Proc. Amer. Math. Soc.113 (1991), 727-731.10.1090/S0002-9939-1991-1086345-8Search in Google Scholar

[36] Z. Zhou, Convergence theorems of fixed points for κ-strict pseudo-contractions in Hilbert spaces, Nonlinear Anal.69 (2008), 456-462.10.1016/j.na.2007.05.032Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
Volume Open
Argomenti della rivista:
Matematica, Matematica generale