Accesso libero

Selenium-sulphur effects on the chemical composition of alfalfa (Medicago sativa L. cv. Verko)

INFORMAZIONI SU QUESTO ARTICOLO

Cita

[1] E. L. Amweg, D. L. Stuart, D. P. Weston, Comparative bioavailability of selenium to aquatic organisms after biological treatment of agricultural drainage water. Aquatic Toxicology, 63. (2003) 13–25.10.1016/S0166-445X(02)00110-8Search in Google Scholar

[2] I. Arnault, J. Auger, Seleno-compounds in garlic and onion. Journal of Chromatography A, 1112. (2006) 23–30.10.1016/j.chroma.2006.01.036Search in Google Scholar

[3] G. S. Bañuelos et al., Selenium accumulation, distribution, and speciation in spineless prickly pear cactus: A drought- and salt-tolerant, selenium-enriched nutraceutical fruit crop for biofortified foods. Plant Physiology, 155. (2010) 315–327.10.1104/pp.110.162867Search in Google Scholar

[4] P. Barak, I. L. Goldman, Antagonistic relationship between selenate and sulfate uptake in onion (Allium cepa): Implications for the production of organosulfur and organoselenium compounds in plants. Journal of Agricultural and Food Chemistry, 45. (1997) 1290–1294.10.1021/jf960729kSearch in Google Scholar

[5] H. N. Barbara, D. Slawomir, W. Malgorzata, Selenium affects physiological parameters and phytochelatins accumulation in cucumber (Cucumis sativus L.) plants grown under cadmium exposure. Scientia Horticulturae, 172. (2014) 10–18.10.1016/j.scienta.2014.03.040Search in Google Scholar

[6] M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Annals of Botany, 72. (1976) 248–254.10.1016/0003-2697(76)90527-3Search in Google Scholar

[7] E. Cabannes, P. Buchner, M. R. Broadley, M. J. Hawkesford, A comparison of sulfate and selenium accumulation in relation to the expression of sulfate transporter genes in Astragalus cultivars. Plant Physiology, 157. (2011) 2227–2239.10.1104/pp.111.183897Search in Google Scholar

[8] P. Cartes, L. Gianfreda, M. L. Mora, Uptake of selenium and its antioxidant activity in ryegrass when applied as selenate and selenite forms. Plant and Soil, 276. (2005) 359–367.10.1007/s11104-005-5691-9Search in Google Scholar

[9] B. Cheng et al., Effects of selenium and sulfur on antioxidants and physiological parameters of garlic plants during senescence. Journal of Integrative Agriculture, 15. (2016) 566–572.10.1016/S2095-3119(15)61201-1Search in Google Scholar

[10] H. P. Dai et al., The difference in antioxidant capacity of four alfalfa cultivars in response to Zn. Ecotoxicology and Environmental Safety, 114. (2015) 312–317.10.1016/j.ecoenv.2014.04.04425037070Search in Google Scholar

[11] L. J. De Kok, P. J. C. Kuiper, Effect of short-term dark incubation with sulfate, chloride and selenate on the glutathione content of spinach leaf discs. Plant Physiology, 68. (1986) 477–482.10.1111/j.1399-3054.1986.tb03385.xSearch in Google Scholar

[12] L. Deng, K. B. Wang, J. P. Li, Z. P. Shangguan, S. Sweeney, Carbon storage dynamics in alfalfa (Medicago sativa) fields in the hilly-gully region of the Loess Plateau, China. Clean-Soil Air Water, 42. (2014) 1253–1262.10.1002/clen.201300079Search in Google Scholar

[13] M. Djanaguiraman, D. Durga Devi, A. K. Shanker, J. A. Sheeba, U. Bangarusamy, Selenium – An antioxidative protectant in soybean during senescence. Plant and Soil, 272. (2005) 77–86.10.1007/s11104-004-4039-1Search in Google Scholar

[14] J. Drahonovský et al., Selenium uptake, transformation and inter-element interactions by selected wildlife plant species after foliar selenate application. Environmental and Experimental Botany, 125. (2016) 12–19.10.1016/j.envexpbot.2016.01.006Search in Google Scholar

[15] J. W. Fan et al., Changes in root morphology and physiology to limited phosphorus and moisture in a locally-selected cultivar and an introduced cultivar of Medicago sativa L. growing in alkaline soil. Plant and Soil, 392. (2015) 215–226.10.1007/s11104-015-2454-0Search in Google Scholar

[16] Q. Fariduddin, I. Yusuf Ahmad, A. Ahmad, Brassionsteroids and their role in response of plants to abiotic stresses. Plant Biology, 58. (2014) 9–17.10.1007/s10535-013-0374-5Search in Google Scholar

[17] M. Filek et al., The protective role of selenium in rape seedlings subjected to cadmium stress. Journal of Plant Physiology, 165. (2008) 833–844.10.1016/j.jplph.2007.06.006Search in Google Scholar

[18] M. Filek et al., Changes in wheat plastid membrane properties induced by cadmium and selenium in presence/absence of 2,4-dichlorophenoxyacetic acid. Plant Cell Tissue Organ Culture, 96. (2009) 19–28.10.1007/s11240-008-9455-0Search in Google Scholar

[19] S. J. Filley, A. Pas, C. Peters, G. Bouska, J. Pirelli Oldfield, Selenium fertilization of pastures for improved forage selenium content. Journal of Animal Science, 23. (2007) 144–147.10.15232/S1080-7446(15)30954-2Search in Google Scholar

[20] F. Garousi, B. Kovács, D. Andrási, S. Veres, Selenium phytoaccumulation by sunflower plants under hydroponic conditions. Water, Air & Soil Pollution, 227. (2016) 3–11.10.1007/s11270-016-3087-5Search in Google Scholar

[21] F. Garousi, B. Kovács, E. Domokos-Szabolcsy, S. Veres, Biological changes of green pea (Pisum sativum L.) by selenium enrichment. Acta Biologica Hungarica, 69. (2017) 197–209.10.1556/018.69.2018.2.829888665Search in Google Scholar

[22] M. Germ, V. Stibilj, J. J. Osvald, I. Kreft, Effect of selenium foliar application on chicory (Cichoriumintybus L.). Journal of Agricultural and Food Chemistry, 55. (2007) 795–798.10.1021/jf062988817263476Search in Google Scholar

[23] H. Hartikainen et al., Quality of the ryegrass and lettuce yields as affected by selenium fertilization. Agricultural and Food Science, 6. (1997) 381–387.10.23986/afsci.72801Search in Google Scholar

[24] H. Hartikainen, T. Xue, The promotive effect of selenium on plant growth as triggered by ultraviolet irradiation. Journal of Environmental Quality, 28. (1999) 1272–1275.10.2134/jeq1999.00472425002800040043xSearch in Google Scholar

[25] H. Hartikainen, T. Xue, V. Piironen, Selenium as an anti-oxidant and pro-oxidant in ryegrass. Plant and Soil, 225. (2000) 193–200.10.1023/A:1026512921026Search in Google Scholar

[26] K. Hu, L. Zhang, J. Wang, Y. You, Influence of selenium on growth, lipid peroxidation and antioxidative enzyme activity in melon (Cucumis melo L.) seedlings under salt stress. Acta Societatis Botanicorum Polo-niae, 82. (2013a) 193–197.10.5586/asbp.2013.023Search in Google Scholar

[27] X. Hu et al., Seed dormancy in four Tibetan Plateau Vicia species and characterization of physiological changes in response of seeds to environmental factors. Seed Science Research, 23. (2013b) 133–140.10.1017/S0960258513000019Search in Google Scholar

[28] M. Iqbal et al., Exogenously applied selenium reduces oxidative stress and induces heat tolerance in spring wheat. Plant Physiology and Biochemistry/Société Francaise Physiologie Végétale, 94. (2015) 95–103.10.1016/j.plaphy.2015.05.01226057700Search in Google Scholar

[29] H. Khattab, Metabolic and oxidative responses associated with exposure of Eruca sativa (Rocket) plants to different levels of selenium. International Journal of Agriculture & Biology, 6. (2004) 1101–1106.Search in Google Scholar

[30] N. Lehotai et al., Nitro-oxidative stress contributes to selenite toxicity in pea (Pisum sativum L). Plant and Soil, 400. (2016) 107–122.10.1007/s11104-015-2716-xSearch in Google Scholar

[31] Y. Lu et al., Seedlings growth and antioxidative enzymes activities in leaves under heavy metal stress differ between two desert plants: A perennial (Peganum harmala) and an annual (Halogeton glomeratus) grass. Acta Physiologiae Plantarum, 32. (2010) 583–590.10.1007/s11738-009-0436-7Search in Google Scholar

[32] M. Malagoli, M. Schiavon, S. dall’Acqua, E. A. Pilon-Smits, Effects of selenium biofortification on crop nutritional quality. Front Plant Science, 6. (2015) 280.10.3389/fpls.2015.00280440473825954299Search in Google Scholar

[33] J. A. Malik et al., Selenium antagonises the toxic effects of arsenic on mungbean (Phaseolus aureus Roxb.) plants by restricting its uptake and enhancing the antioxidative and detoxification mechanisms. Environmental and Experimental Botany, 77. (2012) 242–248.10.1016/j.envexpbot.2011.12.001Search in Google Scholar

[34] V. Mechora,Š. Stibilj, T. Radešček, A. Gaberščik, M. Germ, Impact of Se (VI) fertilization on Se concentration in different parts of red cabbage plants. Journal of Food, Agriculture and Environment, 9. (2011) 357–361.Search in Google Scholar

[35] A. Papoyan, L. V. Kochian, Identification of Thlaspica erulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase. Plant Physiology, 136. (2004) 3814–3823.10.1104/pp.104.04450352717815516513Search in Google Scholar

[36] N. S. Pence et al., The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspica erulescens. Proceedings of the National Academy of Sciences U.S.A., 97. (2000) 4956–4960.10.1073/pnas.97.9.49561833910781104Search in Google Scholar

[37] A. Pennanen, T. Xue, H. Hartikainen, Protective role of selenium in plant subjected to severe UV irradiation stress. Journal of Applied Botany, 76. (2002) 66–76.Search in Google Scholar

[38] M. W. Persans, D. E. Salt, Possible molecular mechanisms involved in nickel, zinc, and selenium hyperaccumulation in plants. Biotechnology & Genetic Engineering Reviews, 17. (2000) 389–413.10.1080/02648725.2000.1064799911255675Search in Google Scholar

[39] E. A. H. Pilon-Smits et al., Selenium volatilization and assimilation by hybrid poplar (Populus tremula x alba). Journal of Experimental Botany, 49. (1998) 1889–1892.10.1093/jexbot/49.328.1889Search in Google Scholar

[40] M. J. Poblaciones, S. Rodrigo, O. Santamaria, Y. Chen, S. P. McGrath, Agronomic selenium biofortification in Triticum durum under Mediterranean conditions: From grain to cooked pasta. Food Chemistry, 146. (2014) 378–384.10.1016/j.foodchem.2013.09.070Search in Google Scholar

[41] P. Pôldma, U. Moor, T. Tônutare, K. Herodes, R. Rebane, Selenium treatment under field conditions affects mineral nutrition, yield and antioxidant properties of bulb onion (Allium cepa L.). Acta Scientiarum Polonorum Hortorum Cultus, 12. (2013) 167–181.Search in Google Scholar

[42] S. Pukacka, E. Ratajczak, E., Kalemba, The protective role of selenium in recalcitrant Acer saccharum L. seeds subjected to desiccation. Journal of Plant Physiology, 168. (2011) 220–225.10.1016/j.jplph.2010.07.02120933296Search in Google Scholar

[43] M. Sabbagh, D. Van Hoewyk, Malformed selenoproteins are removed by the ubiquitin–proteasome pathway in Stanleyapinnata. Plant and Cell Physiology, 53. (2012) 555–564.10.1093/pcp/pcs01522323770Search in Google Scholar

[44] A. Saffaryazdi, M. Lahouti, A. Ganjeali, H. Bayat, Impact of selenium supplementation on growth and selenium accumulation on spinach (Spinacia oleracea L.) plants. Notulae Scientia Biologicae, 4. (2012) 95–100.10.15835/nsb448029Search in Google Scholar

[45] M. Sanchez, G. Revilla, I. Zarra, Changes in peroxidase activity associated with cell walls during pine hypocotyl growth. Annals of Botany, 75. (1995) 415–419.10.1006/anbo.1995.1039Search in Google Scholar

[46] N. Shibagaki et al., Selenate-resistant mutants of Arabidopsis thaliana identify Sultr1;2, a sulfate transporter required for efficient transport of sulfate into roots. The Plant Journal, 29. (2002) 475–486.10.1046/j.0960-7412.2001.01232.x11846880Search in Google Scholar

[47] T. G. Sors, D. R. Ellis, D. E. Salt, Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynthesis Research, 86. (2005) 373–389.10.1007/s11120-005-5222-916307305Search in Google Scholar

[48] S. Smolen et al., Biofortification of carrot (Daucus carota L.) with iodine and selenium in a field experiment. Front Plant Science, 7. (2016) 730.10.3389/fpls.2016.00730488231827303423Search in Google Scholar

[49] D. X. Tan et al., Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science. Journal of Experimental Botany, 63. (2012) 577–597.10.1093/jxb/err25622016420Search in Google Scholar

[50] N. Terry, A. M. Zayed, M. P. de Souza, A. S. Tarun, Selenium in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology, 51. (2000) 401–432.10.1146/annurev.arplant.51.1.40115012198Search in Google Scholar

[51] M. Turakainen, H. Hartikainen, M. M. Seppänen, Effects of selenium treatments on potato (Solanum tuberosum L.) growth and concentrations of soluble sugars and starch. Journal of Agricultural and Food Chemistry, 52. (2004) 5378–5382.10.1021/jf040077x15315373Search in Google Scholar

[52] D. Van Hoewyk et al., Transcriptome analyses give insights into seleniustress responses and selenium tolerance mechanisms in Arabidopsis. Plant Physiology, 132. (2008) 236–253.Search in Google Scholar

[53] C. Q. Wang, Water-stress mitigation by selenium in Trifoliumrepens L. Journal of Plant Nutrition and Soil Science, 174. (2011) 276–282.10.1002/jpln.200900011Search in Google Scholar

[54] M. Weber, E. Harada, C. Vess, E. V. Roepenack-Lahaye, S. Clemens, Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. The Plant Journal, 37. (2004) 269–281.10.1046/j.1365-313X.2003.01960.x14690510Search in Google Scholar

[55] P. J. White et al., Interactions between selenium and sulfur nutrition in Arabidopsis thaliana. Journal of Experimental Botany, 55. (2004) 1927–1937.10.1093/jxb/erh19215258164Search in Google Scholar

[56] T. Xue, H. Hartikainen, V. Piironen, Antioxidative and growth-promoting effect of selenium in senescing lettuce. Plant and Soil, 237. (2001) 55–61.10.1023/A:1013369804867Search in Google Scholar

[57] X. Yao, J. Chu, G. Wang, Effects of selenium on wheat seedlings under drought stress. Biological Trace Element Research, 130. (2009) 283–290.10.1007/s12011-009-8328-719214397Search in Google Scholar

[58] X. Yao, J. Chu, C. Ba, Antioxidant responses of wheat seedlings to exogenous selenium supply under enhanced ultraviolet-B. Biological Trace Element Research, 136. (2010) 96–105.10.1007/s12011-009-8520-919756399Search in Google Scholar

[59] Z. Zhang, R. Huang, Analysis of malondialdehyde, chlorophyll, proline, soluble sugar, and glutathione content in Arabidopsis seedling. Bio-Protocol, 3. (2013) 14.10.21769/BioProtoc.817Search in Google Scholar

eISSN:
2066-7744
Lingua:
Inglese