This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
E. Casas-Alvero. Polar germs, Jacobian ideal and analytic classification of irreducible plane curve singularities. Manuscripta Math. Vol. 172 (2023), 169-207.Search in Google Scholar
A. Chenciner. Courbes algébriques planes. Publications Mathématiques de lUniversité Paris VII, 1978.Search in Google Scholar
A. Hefez; M.E. Hernandes; M.F. Hernández Iglesias. On polars of plane branches. Singularities in geometry, topology, foliations and dynamics. 135153, Trends Math., Birkhäuser, Springer, Cham, 2017.Search in Google Scholar
A. Hefez and M. E. Hernandes. The analytic classification of irreducible plane curve singularities, in Handbook of geometry and topology of singularities II, eds Cisneros-Molina, J. L., L, D. T. and Seade, J. (Springer, 2021), 165.Search in Google Scholar
M. Oka Non-degenerate complete intersection singularity. Actualités Mathématiques. Hermann, Paris, 1997. viii+309 pp. 220.Search in Google Scholar
R. Peraire. Moduli of plane curve singularities with a single characteristic exponent. Proc. of AMS 126 (1) (1998), 25-34.Search in Google Scholar
F. Pham. Déformations équisingulires des idéaux jacobiens de courbes planes. Proceedings of Liverpool singularities Symposium, II, 218-233, (Lecture Notes in Math., 209), Berlin, Springer-Verlag, (1971).Search in Google Scholar
O. Zariski. On the topology of algebroid singularities. Amer. Journal Math. 54, (1932), 453-465.Search in Google Scholar
O. Zariski. Characterization of plane algebroid curves whose module of differentials has maximum torsion. Proceedings of the National Academy of Sciences 56(3), (1966), 781-786.Search in Google Scholar
O. Zariski. The moduli problem for plane branches. University lecture series AMS, Volume 39 (2006).Search in Google Scholar