Accesso libero

Numerical solution of nonlinear reaction advection-diffusion equation using the modified collocation method

,  e   
03 giu 2025
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Bear, J. (2013). Dynamics of fluids in porous media. Courier Corporation. Search in Google Scholar

Dagan, G. (2012). Flow and transport in porous formations. Springer Science & Business Media. Search in Google Scholar

De Ghislain, M. (1986). Quantitative hydrogeology; groundwater hydrology for engineers. Search in Google Scholar

Durlofsky, L., & Brady, J. F. (1987). Analysis of the Brinkman equation as a model for flow in porous media. Physics of Fluids, 30(11), 3329. Search in Google Scholar

Richard, L. A. (1931). Capillary conduction of liquids through porous mediums. Physics, 1(5), 318-333. Search in Google Scholar

Lucas, T. R. (1974). Error bounds for interpolating cubic splines under various end conditions. SIAM Journal on Numerical Analysis, 11(3), 569-584. Search in Google Scholar

Fisher, R. A. (1937). The wave of advance of advantageous genes. Annals of eugenics, 7(4), 355-369. Search in Google Scholar

Kenkre, V. M. (2004). Results from variants of the Fisher equation in the study of epidemics and bacteria. Physica A: Statistical Mechanics and its Applications, 342(1-2), 242-248. Search in Google Scholar

Tyson, J. J., & Fife, P. C. (1980). Target patterns in a realistic model of the BelousovZhabotinskii reaction. The Journal of Chemical Physics, 73(5), 2224-2237. Search in Google Scholar

Bramson, M. D. (1978). Maximal displacement of branching Brownian motion. Communications on Pure and Applied Mathematics, 31(5), 531-581. Search in Google Scholar

De Loubens, R., & Ramakrishnan, T. (2011). Asymptotic solution of a nonlinear advection-diffusion equation. Quarterly of applied mathematics, 69(2), 389-401. Search in Google Scholar

De Loubens, R., & Ramakrishnan, T. S. (2011). Analysis and computation of gravity-induced migration in porous media. Journal of fluid mechanics, 675, 60-86. Search in Google Scholar

Polyanin, A. D., & Zhurov, A. I. (2014). The functional constraints method: Application to non-linear delay reactiondiffusion equations with varying transfer coefficients. International Journal of Non-Linear Mechanics, 67, 267-277. Search in Google Scholar

Sherratt, J. A., & Marchant, B. P. (1996). Nonsharp travelling wave fronts in the Fisher equation with degenerate nonlinear diffusion. Applied Mathematics Letters, 9(5), 33-38. Search in Google Scholar

Lu, J., Yu-Cui, G., & Shu-Jiang, X. (2007). Some new exact solutions to the BurgersFisher equation and generalized BurgersFisher equation. Chinese Physics, 16(9), 2514. Search in Google Scholar

Mittal, R. C., & Arora, G. (2010). Efficient numerical solution of Fisher’s equation by using B-spline method. International Journal of Computer Mathematics, 87(13), 3039-3051. Search in Google Scholar

Jaiswal, S., Chopra, M., & Das, S. (2019). Numerical solution of nonlinear partial differential equation for porous media using operational matrices. Mathematics and Computers in Simulation, 160, 138-154. Search in Google Scholar

Dwivedi, K. D., & Das, S. (2019). Numerical solution of the nonlinear diffusion equation by using non-standard/standard finite difference and Fibonacci collocation methods. The European Physical Journal Plus, 134(12), 608. Search in Google Scholar

Berryman, J. G., & Holland, C. J. (1978). Nonlinear diffusion problem arising in plasma physics. Physical Review Letters, 40(26), 1720. Search in Google Scholar

Rohila, R., & Mittal, R. (2018). Numerical study of reaction diffusion Fishers equation by fourth order cubic B-spline collocation method. Mathematical Sciences, 12, 79-89. Search in Google Scholar

Pudasaini, S. P., Ghosh Hajra, S., Kandel, S., & Khattri, K. B. (2018). Analytical solutions to a nonlinear diffusionadvection equation. Zeitschrift fr angewandte Mathematik und Physik, 69, 1-20. Search in Google Scholar

Singh, A., Dahiya, S., & Singh, S. P. (2020). A fourth-order B-spline collocation method for nonlinear BurgersFisher equation. Mathematical Sciences, 14, 75-85. Search in Google Scholar

Mittal, R. C., & Jain, R. K. (2013). Numerical solutions of nonlinear Fisher’s reactiondiffusion equation with modified cubic B-spline collocation method. Mathematical Sciences, 7(1), 12. Search in Google Scholar

Kumar, R., & Arora, S. (2022). solution of fisher Kolmogorov Petrovsky equation driven via Haar scale-3 wavelet collocation method. International Journal of Mathematical, Engineering and Management Sciences, 7(5), 717-729. Search in Google Scholar

Ahmad, Z., & Kothyari, U. C. (2001). Time-line cubic spline interpolation scheme for solution of advection equation. Computers & fluids, 30(6), 737-752. Search in Google Scholar

Siddiqi, S. S., & Arshed, S. (2014). Quintic B-spline for the numerical solution of the good Boussinesq equation. Journal of the Egyptian Mathematical Society, 22(2), 209-213. Search in Google Scholar

Wasim, I., Abbas, M., & Amin, M. (2018). Hybrid BSpline Collocation Method for Solving the Generalized BurgersFisher and BurgersHuxley Equations. Mathematical Problems in Engineering, 2018(1), 6143934. Search in Google Scholar

Cherniha, R., Serov, M., & Rassokha, I. (2008). Lie symmetries and form-preserving transformations of reactiondiffusionconvection equations. Journal of mathematical analysis and applications, 342(2), 1363-1379. Search in Google Scholar

Buckingham, E. (1907). Studies on the movement of soil moisture. US Dept. Agic. Bur. Soils Bull., 38. Search in Google Scholar

Rogers, J. R., & Fredrich, A. J. (Eds.). (2001, October). International Engineering History and Heritage: Improving Bridges to ASCE’s 150th Anniversary. American Society of Civil Engineers. Search in Google Scholar

Kovarik, K. (2012). Numerical models in groundwater pollution. Springer Science & Business Media. Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
3 volte all'anno
Argomenti della rivista:
Matematica, Matematica generale