1. bookVolume 30 (2022): Edizione 2 (May 2022)
Dettagli della rivista
License
Formato
Rivista
eISSN
1844-0835
Prima pubblicazione
17 May 2013
Frequenza di pubblicazione
1 volta all'anno
Lingue
Inglese
access type Accesso libero

Solving Single Nesting Problem Using a Genetic Algorithm

Pubblicato online: 02 Jun 2022
Volume & Edizione: Volume 30 (2022) - Edizione 2 (May 2022)
Pagine: 259 - 272
Ricevuto: 15 Jun 2021
Accettato: 25 Sep 2021
Dettagli della rivista
License
Formato
Rivista
eISSN
1844-0835
Prima pubblicazione
17 May 2013
Frequenza di pubblicazione
1 volta all'anno
Lingue
Inglese
Abstract

Since the Bin Packing Problem (BPP) has application to industry and supply chain management problems (to mention only the most important ones), it attracted attention from its formulation. The Single Nesting Problem treated here is a particular case of this optimization problem, which different methods, mainly combinatorial, can solve. In this article, we propose using a genetic algorithm for solving the single nesting problem formulated in a previous article by the authors. The results comparisons prove that this approach is an excellent alternative to the combinatorial ones.

Keywords

MSC 2010

[1] M. Abdel-Basset, G. Manogaran, L. Abdel-Fatah, and S. Mirjalili, An improved nature inspired meta-heuristic algorithm for 1-D bin packing problems, Pers Ubiquit. Comput 22 (2018), 11171132.10.1007/s00779-018-1132-7 Search in Google Scholar

[2] A. C. F. Alvim, C. C. Ribeiro, F. Glover, and D. J. Aloise, A hybrid improvement heuristic for the one-dimensional bin packing problem, https://leeds-faculty.colorado.edu/glover/TS%20-%20bin%20packing%20-%20Ceslso.pdf Search in Google Scholar

[3] A. Bărbulescu, C. Ş. Dumitriu, On the connection between the GEP Performances and the Time Series Properties, Mathematics 9(16) (2021), 1853, https://doi.org/10.3390/math9161853.10.3390/math9161853 Search in Google Scholar

[4] A. Bărbulescu, C. Ş. Dumitriu, Mathematical aspects of the study of the cavitation in liquids, in Series on Mathematical Modelling of Environmental and Life Sciences Problems, Proceedings of the 4th Workshop, Sept. 2005, Constanta, Romania, S. Ion, G. Marinoschi, C. Popa (eds.), Ed. Academiei Romne, Bucureti (2006), 7-15. Search in Google Scholar

[5] A. Bărbulescu, C. Şerban, M.-L. Indrecan, Improving spatial interpolation quality. IDW versus a genetic algorithm, Water 13 (2021), 863, https://doi.org/10.3390/w13060863.10.3390/w13060863 Search in Google Scholar

[6] A. Bărbulescu, C. Şerban, S. Caramihai, Assessing the soil pollution using a genetic algorithm, Romanian Journal of Physics 66(3-4) (2021), 806. Search in Google Scholar

[7] H. Ben Amor and J. Valério de Carvalho, Cutting Stock Problems. In: G. Desaulniers, J. Desrosiers, M. M. Solomon (eds), Column Generation. Springer, Boston, MA. (2005), 131-161.10.1007/0-387-25486-2_5 Search in Google Scholar

[8] H. Cambazard and B. O’ Sullivan, Propagating the Bin Packing Constraint Using Linear Programming. In: D. Cohen (ed), Principles and Practice of Constraint Programming CP 2010. CP 2010. Lecture Notes in Computer Science, 6308. Springer, Berlin, Heidelberg, (2010), 129-136. Search in Google Scholar

[9] E. G. Co man Jr., J.Csirik, G. Galambos, S. Martello, and D. Vigo, Bin Packing Approximation Algorithms: Survey and Classification. In: P. Pardalos, D. Z. Du, R. Graham (eds), Handbook of Combinatorial Optimization. Springer, New York, NY. (2013), 455-531.10.1007/978-1-4419-7997-1_35 Search in Google Scholar

[10] F.-L. Dragomir, G. Alexandrescu, Applications of artificial intelligence in the decision fundamentation, Bulletin of “Carol I” National Defence University 4(2) (2017), 56-61 (in Romanian). Search in Google Scholar

[11] F.-L. Dragomir, The modeling of the decisional problems, Bulletin of “Carol I” National Defence University, 01 (2017), 72-75. Search in Google Scholar

[12] F.-L. Dragomir, The axiomatic character of decision, Bulletin of “Carol I” National Defence University 4(2) (2017), 56-61. Search in Google Scholar

[13] C. Ş. Dumitriu, A. Bărbulescu, A method for the single direction nesting computation, The 7th Balkan Conference on Operational Research, BACOR 05, Constanta, May 2005, Romania, https://www.academia.edu/44635040/A_Method_for_the_Single_Direction_Nesting_Computation. Search in Google Scholar

[14] C. Ş. Dumitriu, A. Bărbulescu, Studies about the copper base alloys used in naval constructions modeling the loss mass in different media, Sitech, Craiova (2007). Search in Google Scholar

[15] S. Eilon and N. Christofides, The loading problem, Manag. Sci. 17(5) (1971), 259-278.10.1287/mnsc.17.5.259 Search in Google Scholar

[16] H. Feng, H. Ni, R. Zhao, and X. Zhu, An Enhanced Grasshopper Optimization Algorithm to the Bin Packing Problem, J. Control Sci. Eng., 3894987 (2020).10.1155/2020/3894987 Search in Google Scholar

[17] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Pearson Education, Singapore (2002). Search in Google Scholar

[18] M. S. Hung and J. R. Brown, An algorithm for a class of loading problems, Naval Res. Logist. Q. 25(2) (1978), 289-297.10.1002/nav.3800250209 Search in Google Scholar

[19] M. Hyde, G. Ochoa, J. Vázquez-Rodriguez, and T. Curtois, A HyFlex Module for the One Dimensional Bin Packing Problem, (2011), http://www.asap.cs.nott.ac.uk/external/chesc2011/reports/BinPackingHyFlex.pdf. Search in Google Scholar

[20] J. Joines and C. Houck, On the Use of Non-Stationary Penalty Functions to Solve Constrained Optimization Problems with Genetic Algorithms, Proceedings of the 1st IEEE Conference on Evolutionary Computation, Orlando, 27-29 June 1994, 579-584. Search in Google Scholar

[21] S. Martello, Packing problems in one or more dimensions, (2018), http://www.or.deis.unibo.it/staff_pages/martello/Slides_Estoril_Martello.pdf. Search in Google Scholar

[22] S. Martello and P. Toth, Knapsack problems. Algorithms and Computer Implementation, John Willey & Sons, Chichester, West England (1990). Search in Google Scholar

[23] E. A. Mukhacheva, G. N. Belov, V. M. Kartack, and A. S. Mukhacheva, Linear one-dimensional cutting-packing problems: numerical experiments with the sequential value correction method (SVC) and a modified branch-and-bound method (MBB), Pesqui. Oper. 20(2) (2000), 153 - 168.10.1590/S0101-74382000000200002 Search in Google Scholar

[24] C. Munien, S. Mahabeer, E. Dzitiro, S. Singh, S. Zungu, and A. El-Shamir Ezugwu, Metaheuristic Approaches for One-Dimensional Bin Packing Problem: A Comparative Performance Study, IEEE Access 8, 227438 (2020). Search in Google Scholar

[25] G. Scheithauer, Introduction to Cutting and Packing Optimization. Problems, Modeling Approaches, Solution Methods, Springer International Publishing (2018).10.1007/978-3-319-64403-5_1 Search in Google Scholar

[26] S. N. Sivanandam and S. N. Deepa, Introduction to Genetic Algorithms, Springer-Verlag Berlin Heidelberg (2008). Search in Google Scholar

[27] S. L. Yadav and A. Sohal, Comparative Study of Different Selection Techniques in Genetic Algorithm, Int. J. Eng. Sci. Math. 6(3) (2017), 174-180. Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo