In this paper, Sheffer stroke BCK-algebra is defined and its features are investigated. It is indicated that the axioms of a Sheffer stroke BCK-algebra are independent. The relationship between a Sheffer stroke BCK-algebra and a BCK-algebra is stated. After describing a commutative, an implicative and an involutory Sheffer stroke BCK-algebras, some of important properties are proved. The relationship of this structures is demonstrated. A Sheffer stroke BCK-algebra with condition (S) is described and the connection with other structures is shown. Finally, it is proved that for a Sheffer stroke BCK-algebra to be a Boolean lattice, it must be an implicative Sheffer stroke BCK-algebra.
Keywords
- (Sheffer stroke) BCK-algebra
- (implicative, bounded, involutory, positive implicative, commutative) Sheffer stroke BCK-algebra
- BCK-lattice
MSC 2010
- Primary 06F05, 03G25
- Secondary 03G10
Negative clean rings Periodic and Solitary Wave Solutions for the One-Dimensional Cubic Nonlinear Schrödinger Model Solving Single Nesting Problem Using a Genetic Algorithm Sombor index of zero-divisor graphs of commutative rings Central and local limit theorems for the weighted Delannoy numbers A new existence results on fractional differential inclusions with state-dependent delay and Mittag-Leffler kernel in Banach space Algebraic Heun Operators with Tetrahedral Monodromy Collectively Fixed Point Theory in the Compact and Coercive Cases A result of instability for two-temperatures Cosserat bodies Properties of n -ary hypergroups relevant for modelling trajectories in HD mapsLaplacian energy and first Zagreb index of Laplacian integral graphs Torsion subgroups of rational Mordell curves over some families of number fields Characterization of second type plane foliations using Newton polygons Motion of Inextensible Quaternionic Curves and Modified Korteweg-de Vries Equation Ellipses surrounding convex bodies