1. bookVolume 29 (2021): Edizione 3 (November 2021)
Dettagli della rivista
License
Formato
Rivista
eISSN
1844-0835
Prima pubblicazione
17 May 2013
Frequenza di pubblicazione
1 volta all'anno
Lingue
Inglese
access type Accesso libero

Irreducible skew polynomials over domains

Pubblicato online: 23 Nov 2021
Volume & Edizione: Volume 29 (2021) - Edizione 3 (November 2021)
Pagine: 75 - 89
Ricevuto: 22 Apr 2021
Accettato: 30 Apr 2021
Dettagli della rivista
License
Formato
Rivista
eISSN
1844-0835
Prima pubblicazione
17 May 2013
Frequenza di pubblicazione
1 volta all'anno
Lingue
Inglese
Abstract

Let S be a domain and R = S[t; σ, δ] a skew polynomial ring, where σ is an injective endomorphism of S and δ a left σ -derivation. We give criteria for skew polynomials fR of degree less or equal to four to be irreducible. We apply them to low degree polynomials in quantized Weyl algebras and the quantum planes. We also consider f(t) = tmaR.

Keywords

MSC 2010

[1] G. Benkart, S. A. Lopes, M. Ondrus, A parametric family of subalgebras of the Weyl algebra I. Structure and automorphisms. Trans. Amer. Math. Soc. 367 (3) (2015), 1993-2021.10.1090/S0002-9947-2014-06144-8 Search in Google Scholar

[2] G. Benkart, S. A. Lopes, M. Ondrus, A parametric family of subalgebras of the Weyl algebra II. Irreducible modules. Online at arXiv:1212.1404 [math.RT] Search in Google Scholar

[3] G. Benkart, S. A. Lopes, M. Ondrus, Derivations of a parametric family of subalgebras of the Weyl algebra. J. Algebra 424 (2015), 46-97. Search in Google Scholar

[4] N. Boubaki, Éléments de mathématique. Fasc. XXIII. Algèbre; Chapitre 8, modules e anneaux semi-simples. Hermann, 1973. Search in Google Scholar

[5] C. Brown, S. Pumplün, How a nonassociative algebra reflects the properties of a skew polynomial. Glasgow Mathematical Journal (Nov. 2019) https://doi.org/10.1017/S001708951900047810.1017/S0017089519000478 Search in Google Scholar

[6] P. M. Cohn, “Skew fields. Theory of general division rings.” Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1995.10.1017/CBO9781139087193 Search in Google Scholar

[7] C. Cook, K. Price, Factorization in quantized Weyl algebras. Preprint, University of Wisconsin Oshkosh August 24, 2005 Search in Google Scholar

[8] R. Coulibaly, K. Price, Factorization in quantum planes. Missouri J. Math. Sci. 18 (3)(2006), 197-205.10.35834/2006/1803197 Search in Google Scholar

[9] J. Gòmez-Torrecillas, F. J. Lobillo, G. Navarro, Computing the bound of an Ore polynomial. Applications to factorization. J. Symbolic Comp. 2018, online at https://doi.org/10.1016/j.jsc.2018.04.01810.1016/j.jsc.2018.04.018 Search in Google Scholar

[10] K. Goodearl, Prime ideals in skew polynomial rings and quantized Weyl algebras. J. Algebra 150 (2) (1992), 324-377.10.1016/S0021-8693(05)80036-5 Search in Google Scholar

[11] C. Holtz, K. Price, Normal quadratics in Ore extensions, quantum planes, and quantized Weyl algebras. Acta Applicandae Mathematicae 108 (1) (2009), 73-81.10.1007/s10440-008-9371-7 Search in Google Scholar

[12] N. Jacobson, “Finite-dimensional division algebras over fields.” Springer Verlag, Berlin-Heidelberg-New York, 1996.10.1007/978-3-642-02429-0 Search in Google Scholar

[13] T. Y. Lam, A. Leroy, Vandermonde and Wroskian matrices over division rings. J. Alg. 19(2)(1988), 308-336.10.1016/0021-8693(88)90063-4 Search in Google Scholar

[14] J.-C. Petit, Sur certains quasi-corps généralisant un type d’anneau-quotient. Séminaire Dubriel. Algèbre et théorie des nombres 20 (1966-67), 1-18. Search in Google Scholar

[15] O. Ore, Theory of noncommutative polynomials. Annals of Math. 34 (3) (1933), 480-508.10.2307/1968173 Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo