Accesso libero

Experimental Study of Polish Sausage Drying Kinetics and Contraction by Image Data Analysis

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Almena, A., Goode, K. R., Bakalis, S., Fryer, P. J., & Lopez-Quiroga, E. (2019). Optimising food dehydration processes: Energy-efficient drum-dryer operation. Energy Procedia, 161, 174–181. doi: 10.1016/j.egypro.2019.02.078 Search in Google Scholar

Anandharamakrishnan, C. (2017). Handbook of Drying for Dairy Procucts. Oxford: John Wiley & Sons Ltd All. Search in Google Scholar

Andlar, M., Rezić, T., Marđetko, N., Kracher, D., Ludwig, R., & Šantek, B. (2018). Lignocellulose degradation: An overview of fungi and fungal enzymes involved in lignocellulose degradation. Engineering in Life Sciences, 18(11), 768–778. doi: 10.1002/elsc.201800039 Search in Google Scholar

Babu, A. K., Kumaresan, G., Raj, V. A. A., & Velraj, R. (2018). Review of leaf drying: Mechanism and influencing parameters, drying methods, nutrient preservation, and mathematical models. Renewable and Sustainable Energy Reviews, 90(March), 536–556. doi: 10.1016/j.rser.2018.04.002 Search in Google Scholar

Barresi, A. A., & Marchisio, D. L. (2018). Computational Fluid Dynamics data for improving freeze-dryers design. Data in Brief, 19, 1181–1213. doi: 10.1016/j.dib.2018.05.141 Search in Google Scholar

Barresi, A. A., Rasetto, V., & Marchisio, D. L. (2018). Use of computational fluid dynamics for improving freeze-dryers design and process understanding. Part 1: Modelling the lyophilisation chamber. European Journal of Pharmaceutics and Biopharmaceutics, 129(April), 30–44. doi: 10.1016/j.ejpb.2018.05.008 Search in Google Scholar

Benhamza, A., Boubekri, A., Atia, A., El Ferouali, H., Hadibi, T., Arıcı, M., & Abdenouri, N. (2021). Multi-objective design optimization of solar air heater for food drying based on energy, exergy and improvement potential. Renewable Energy, 169, 1190–1209. doi: 10.1016/j.renene.2021.01.086 Search in Google Scholar

Benseddik, A., Azzi, A., Zidoune, M. N., & Allaf, K. (2018). Mathematical empirical models of thin-layer airflow drying kinetics of pumpkin slice. Engineering in Agriculture, Environment and Food, 11(4), 220–231. doi: 10.1016/j.eaef.2018.07.003 Search in Google Scholar

Castro, A. M., Mayorga, E. Y., & Moreno, F. L. (2018). Mathematical modelling of convective drying of fruits: A review. Journal of Food Engineering, 223, 152–167. doi: 10.1016/j.jfoodeng.2017.12.012 Search in Google Scholar

Chandra, P. K., & Singh, R. P. (1995). Applied Numerical Methods for Food and Agricultural Engineers. Boca Raton: CRC Press Taylor & Francis Group. Search in Google Scholar

Chemkhi, S., Zagrouba, F., & Bellagi, A. (2005). Modelling and simulation of drying phenomena with rheological behaviour. Brazilian Journal of Chemical Engineering, 22(2), 153–163. doi: 10.1590/S0104-66322005000200001 Search in Google Scholar

Courtois, F. (2013). Roller and drum drying for food powder production. In Handbook of Food Powders: Processes and Properties. Woodhead Publishing Limited. doi: 10.1533/9780857098672.1.85 Search in Google Scholar

Cunningham, S. E., McMinn, W. A. M., Magee, T. R. A., & Richardson, P. S. (2007). Modelling water absorption of pasta during soaking. Journal of Food Engineering, 82(4), 600–607. doi: 10.1016/j.jfoodeng.2007.03.018 Search in Google Scholar

Du, Y., Yang, F., Yu, H., Xie, Y., & Yao, W. (2022). Improving food drying performance by cold plasma pretreatment: A systematic review. Comprehensive Reviews in Food Science and Food Safety, 21(5), 4402–4421. doi: 10.1111/1541-4337.13027 Search in Google Scholar

EL-Mesery, H. S., EL-Seesy, A. I., Hu, Z., & Li, Y. (2022a). Recent developments in solar drying technology of food and agricultural products: A review. Renewable and Sustainable Energy Reviews, 157(January), 112070. doi: 10.1016/j.rser.2021.112070 Search in Google Scholar

EL-Mesery, H. S., EL-Seesy, A. I., Hu, Z., & Li, Y. (2022b). Recent developments in solar drying technology of food and agricultural products: A review. Renewable and Sustainable Energy Reviews, 157(January), 112070. doi: 10.1016/j.rser.2021.112070 Search in Google Scholar

Erbay, Z., & Icier, F. (2010). A review of thin layer drying of foods: Theory, modeling, and experimental results. Critical Reviews in Food Science and Nutrition, 50(5), 441–464. doi: 10.1080/10408390802437063 Search in Google Scholar

Ertekin, C., & Firat, M. Z. (2017). A comprehensive review of thin-layer drying models used in agricultural products. Critical Reviews in Food Science and Nutrition, 57(4), 701–717. doi: 10.1080/10408398.2014.910493 Search in Google Scholar

Fissore, D., Gallo, G., Ruggiero, A. E., & Thompson, T. N. (2019). On the use of a micro freeze-dryer for the investigation of the primary drying stage of a freeze-drying process. European Journal of Pharmaceutics and Biopharmaceutics, 141(January), 121–129. doi: 10.1016/j.ejpb.2019.05.019 Search in Google Scholar

García-Pascual, P., Sanjuán, N., Bon, J., Carreres, J. E., & Mulet, A. (2005). Rehydration process of Boletus edulis mushroom: Characteristics and modelling. Journal of the Science of Food and Agriculture, 85(8), 1397–1404. doi: 10.1002/jsfa.2126 Search in Google Scholar

G. M. White, T. C. Bridges, O. J. Loewer, & I. J. Ross. (1980). Seed Coat Damage in Thin-Layer Drying of Soybeans. Transactions of the ASAE, 23(1), 0224–0227. doi: 10.13031/2013.34559 Search in Google Scholar

Górnicki, K., & Kaleta, A. (2007). Modelling convection drying of blanched parsley root slices. Biosystems Engineering, 97(1), 51–59. doi: 10.1016/j.biosystemseng.2007.02.006 Search in Google Scholar

Goud, M., Reddy, M. V. V., V.P., C., & S., S. (2019). A novel indirect solar dryer with inlet fans powered by solar PV panels: Drying kinetics of Capsicum Annum and Abelmoschus esculentus with dryer performance. Solar Energy, 194(November), 871–885. doi: 10.1016/j.solener.2019.11.031 Search in Google Scholar

Hazervazifeh, A., Nikbakht, A. M., & Nazari, S. (2020). Industrial microwave dryer: An effective design to reduce non-uniform heating. Engineering in Agriculture, Environment and Food. doi: 10.1016/j.eaef.2019.12.001 Search in Google Scholar

Hernandez, B., Martín, M., & Gupta, P. (2021). Numerical study of airflow regimes and instabilities produced by the swirl generation chamber in counter-current spray dryers. Chemical Engineering Research and Design, 176, 89–101. doi: 10.1016/j.cherd.2021.09.024 Search in Google Scholar

Hernández, B., Pinto, M. A., & Martín, M. (2022). Generation of a surrogate compartment model for counter-current spray dryer. Fluxes and momentum modeling. Computers and Chemical Engineering, 159. doi: 10.1016/j.compchemeng.2022.107664 Search in Google Scholar

Kahveci, K. (2017). Modeling and numerical simulation of simultaneous heat and mass transfer during convective drying of porous materials. Textile Research Journal, 87(5), 617–630. doi: 10.1177/0040517516635998 Search in Google Scholar

Kaleta, G., & Górnicki, K. (2002). Niektóre zaganienia dotyczące modelowania procesu konwekcyjnego suszenia warzyw i owoców. Postępy Nauk Roliczych, 4, 141–152. Search in Google Scholar

Karaaslan, S., Ekinci, K., & Akbolat, D. (2017). Drying characteristics of sultana grape fruit in microwave dryer. Infrastruktura i Ekologia Terenów Wiejskich, IV/1, 1317–1327. doi: 10.14597/infraeco.2017.4.1.101 Search in Google Scholar

Kavak Akpinar, E., Bicer, Y., & Cetinkaya, F. (2006). Modelling of thin layer drying of parsley leaves in a convective dryer and under open sun. Journal of Food Engineering, 75(3), 308–315. doi: 10.1016/j.jfoodeng.2005.04.018 Search in Google Scholar

Khan, M. A., Moradipour, M., Obeidullah, Md., & Quader, A. K. M. A. (2021). Heat and mass transport analysis of the drying of freshwater fishes by a forced convective air‐dryer. Journal of Food Process Engineering, 44(1). doi: 10.1111/jfpe.13574 Search in Google Scholar

Kılıç, E., & Çınar, İ. (2019). Convective hot air drying characteristics of selected vegetables. INTERNATIONAL ADVANCED RESEARCHES and ENGINEERING JOURNAL, 3(1), 7–13. Search in Google Scholar

Kiranoudis, C. T., Maroulis, Z. B., Marinos-Kourisa, D., & Tsamparlisb, M. (1997). Design of Tray Dryers for Food Dehydration. Journul of Food Engineering, 32(3), 269–291. doi: 10.1016/S0260-8774(97)00010-1 Search in Google Scholar

Kumar, S., Jadhav, S. V., & Thorat, B. N. (2022). Life cycle assessment of tomato drying in heat pump and microwave vacuum dryers. Materials Today: Proceedings, 2021(xxxx). doi: 10.1016/j.matpr.2021.12.333 Search in Google Scholar

Law, C. L., Chen, H. H. H., & Mujumdar, A. S. (2014). Food Technologies: Drying. Encyclopedia of Food Safety, 3, 156–167. doi: 10.1016/B978-0-12-378612-8.00268-7 Search in Google Scholar

Lee, D., Lee, M., Park, M. H., & Kim, Y. (2022). Experimental evaluation and prediction model development on the heat and mass transfer characteristics of tumble drum in clothes dryers. Applied Thermal Engineering, 202(November 2021), 117900. doi: 10.1016/j.applthermaleng.2021.117900 Search in Google Scholar

Lingayat, A., Chandramohan, V. P., Raju, V. R. K., & Kumar, A. (2020). Development of indirect type solar dryer and experiments for estimation of drying parameters of apple and watermelon: Indirect type solar dryer for drying apple and watermelon. Thermal Science and Engineering Progress, 16(November 2019). doi: 10.1016/j.tsep.2020.100477 Search in Google Scholar

Lockrey, S., Verghese, K., Danaher, J., Newman, L., Barichello, V., & Da Gama, L. (2019). The role of packaging for Australian fresh produce. Search in Google Scholar

Mahapatra, A., & Tripathy, P. P. (2018). Modeling and simulation of moisture transfer during solar drying of carrot slices. Journal of Food Process Engineering, 41(8), 1–15. doi: 10.1111/jfpe.12909 Search in Google Scholar

Marchisio, D. L., Galan, M., & Barresi, A. A. (2018). Use of computational fluid dynamics for improving freeze-dryers design and process understanding. Part 2: Condenser duct and valve modelling. European Journal of Pharmaceutics and Biopharmaceutics, 129(April), 45–57. doi: 10.1016/j.ejpb.2018.05.003 Search in Google Scholar

Matlab documentation. (2012). In Matlab (p. R2012b). doi: 10.1201/9781420034950 Search in Google Scholar

Midilli, A., Kucuk, H., & Yapar, Z. (2002). A new model for single-layer drying. Drying Technology, 20(7), 1503–1513. doi: 10.1081/DRT-120005864 Search in Google Scholar

Mirza Alizadeh, A., Hashempour-Baltork, F., Mousavi Khaneghah, A., & Hosseini, H. (2021). New perspective approaches in controlling fungi and mycotoxins in food using emerging and green technologies. Current Opinion in Food Science, 39(December 2020), 7–15. doi: 10.1016/j.cofs.2020.12.006 Search in Google Scholar

Mota, C. L., Luciano, C., Dias, A., Barroca, M. J., & Guiné, R. P. F. (2010). Convective drying of onion: Kinetics and nutritional evaluation. Food and Bioproducts Processing, 88(2–3), 115–123. doi: 10.1016/j.fbp.2009.09.004 Search in Google Scholar

Mugi, V. R., Das, P., Balijepalli, R., & VP, C. (2022). A review of natural energy storage materials used in solar dryers for food drying applications. Journal of Energy Storage, 49(January), 104198. doi: 10.1016/j.est.2022.104198 Search in Google Scholar

Mugodo, K., & Workneh, T. S. (2021). The kinetics of thin-layer drying and modelling for mango slices and the influence of differing hot-air drying methods on quality. Heliyon, 7(6), e07182. doi: 10.1016/j.heliyon.2021.e07182 Search in Google Scholar

Mujumdar, A. S., & Devahastin, S. (2000). Fundamental principle of drying (pp. 1–22). Brossard, Canada: Exergex. Search in Google Scholar

Muñoz, I., Garcia-Gil, N., Arnau, J., & Gou, P. (2012). Rehydration kinetics at 5 and 15°C of dry salted meat. Journal of Food Engineering, 110(3), 465–471. doi: 10.1016/j.jfoodeng.2011.12.020 Search in Google Scholar

OECD. (2001). Adoption of Technologies for Sustainable Farming Systems. In Wageningen Workshop Proceedings. Search in Google Scholar

Osodo, B. O. (2018). Simulation and optimisation of a drying model for a forced convection grain dryer. Kenyatta University. Search in Google Scholar

Page, G. E. (1949). Factors influencing the maximum rate of air drying shelled corn in thin-layers. Purdue University, West Lafayette, Indiana. Search in Google Scholar

Pham, V. H. T., Ahn, J. Y., Ro, Y. H., Ravindran, B., Kim, J. S., Chang, S. W., Shim, J. H., & Chung, W. J. (2022). The efficiency of potential food waste-degrading bacteria under harsh conditions. Journal of Applied Microbiology, 132(1), 340–350. doi: 10.1111/jam.15119 Search in Google Scholar

Raj, A. K., & Jayaraj, S. (2021). Development and assessment of generalized drying kinetics in multi-tray solar cabinet dryer. Solar Energy, 226(August), 112–121. doi: 10.1016/j.solener.2021.08.034 Search in Google Scholar

Rajasekar, A., & Balasubramanian, R. (2011). Assessment of airborne bacteria and fungi in food courts. Building and Environment, 46(10), 2081–2087. doi: 10.1016/j.buildenv.2011.04.021 Search in Google Scholar

Rodriguez, G., Vasseur, J., & Courtois, F. (1996a). Design and control of drum dryers for the food industry. Part 1. Set-up of a moisture sensor and an inductive heater. Journal of Food Engineering, 28(3–4), 271–282. doi: 10.1016/0260-8774(95)00053-4 Search in Google Scholar

Rodriguez, G., Vasseur, J., & Courtois, F. (1996b). Design and control of drum dryers for the food industry. Part 2. Automatic control. Journal of Food Engineering, 30(1–2), 171–183. doi: 10.1016/0260-8774(95)00054-2 Search in Google Scholar

Saikia, D., Kumar Nayak, P., Radha Krishnan, K., Kondareddy, R., & Lakshmi, D. V. N. (2022). Development of indirect type solar dryer and experiments for estimation of drying parameters of dhekia (Diplazium esculentum). Materials Today: Proceedings, xxxx. doi: 10.1016/j.matpr.2022.02.255 Search in Google Scholar

Sandikci Altunatmaz, S. S., Issa, G., & Aydin, A. (2012). Detection of airborne psychrotrophic bacteria and fungi in food storage refrigerators. Brazilian Journal of Microbiology, 43(4), 1436–1443. doi: 10.1590/S1517-83822012000400027 Search in Google Scholar

Scherlach, K., Graupner, K., & Hertweck, C. (2013). Molecular bacteria-fungi interactions: Effects on environment, food, and medicine. Annual Review of Microbiology, 67(June), 375–397. doi: 10.1146/annurev-micro-092412-155702 Search in Google Scholar

Schmidt, F. C., Carciofi, B. A. M., & Laurindo, J. B. (2009). Application of diffusive and empirical models to hydration, dehydration and salt gain during osmotic treatment of chicken breast cuts. Journal of Food Engineering, 91(4), 553–559. doi: 10.1016/j.jfoodeng.2008.10.003 Search in Google Scholar

Scutellà, B., Bourlès, E., Plana-Fattori, A., Fonseca, F., Flick, D., Trelea, I. C., & Passot, S. (2018). Effect of Freeze Dryer Design on Heat Transfer Variability Investigated Using a 3D Mathematical Model. Journal of Pharmaceutical Sciences, 107(8), 2098–2106. doi: 10.1016/j.xphs.2018.04.002 Search in Google Scholar

Solomon, A. B., Fanta, S. W., Delele, M. A., & Vanierschot, M. (2021). Modeling and simulation of heat and mass transfer in an Ethiopian fresh injera drying process. Heliyon, 7(2), e06201. doi: 10.1016/j.heliyon.2021.e06201 Search in Google Scholar

Suvarnakuta, P., Devahastin, S., & Mujumdar, A. S. (2005). Drying Kinetics and B-Carotene Degradation in Carrot Undergoing Different Drying Processes. Journal of Food Science, 70(8), 520–526. Search in Google Scholar

Uengkimbuan, N., Soponronnarit, S., Prachayawarakorn, S., & Nathkaranakule, A. (2006). A comparative study of pork drying using superheated steam and hot air. Drying Technology, 24(12), 1665–1672. doi: 10.1080/07373930601031513 Search in Google Scholar

Verma, L. R., Bucklin, R. A., Endan, J. B., & Wratten, F. T. (1985). Effects of Drying Air Parameters on Rice Drying Models. Transactions of the American Society of Agricultural Engineers, 28(1), 296–301. doi: 10.13031/2013.32245 Search in Google Scholar

Vu, H. T., & Tsotsas, E. (2018). Mass and Heat Transport Models for Analysis of the Drying Process in Porous Media: A Review and Numerical Implementation. International Journal of Chemical Engineering, 2018. doi: 10.1155/2018/9456418 Search in Google Scholar

Wang, C. Y., & Singh, R. P. (1978). A single layer drying equation for rough rice. ASAE, Paper No: 78-3001. Search in Google Scholar

Whitaker, S. (1977). Simultaneous Heat, Mass, and Momentum Transfer in Porous Media: A Theory of Drying. Advances in Heat Transfer, 13(C), 119–203. doi: 10.1016/S0065-2717(08)70223-5 Search in Google Scholar

Yagcioglu, A., & Degirmencioglu, A. Cagatay, F. (1999). Drying Characteristics of Laurel Leaves under Different Conditions. Proceedings of the 7th International Congress on Agricultural Mechanization and Energy, 565–569. Search in Google Scholar

Yang, H., Sakai, N., & Watanabe, M. (2001). Drying model with non-isotropic shrinkage deformation undergoing simultaneous heat and mass transfer. Drying Technology, 19(7), 1441–1460. doi: 10.1081/DRT-100105299 Search in Google Scholar

Zhang, M., Bhandari, B., & Fang, Z. (2017). Handbook of drying of vegetables and vegetable products (A. S. Mujumdar, Ed.). CRC Press Taylor & Francis Group. Search in Google Scholar

Zhang, S., Liu, N., Pan, Y., Wang, W., Li, Y., & Zhu, Y. (2021). Three-dimensional modelling of two-phase flow and transport in a pilot centrifugal spray dryer. Chemical Physics Letters, 765(October 2020), 138309. doi: 10.1016/j.cplett.2020.138309 Search in Google Scholar

Zhang, X., Zhu, K., Wang, Y., Li, Y., & Zhang, Y. (2022). Coupling effect of dehydration characteristics and microstructure of broad bean seeds under low-temperature vacuum environment. Drying Technology, 40(2), 230–242. doi: 10.1080/07373937.2020.1783550 Search in Google Scholar

Zhu, Z., Zhao, Y., Zhang, Y., Wu, X., Liu, J., Shi, Q., & Fang, Z. (2021). Effects of ultrasound pretreatment on the drying kinetics, water status and distribution in scallop adductors during heat pump drying. Journal of the Science of Food and Agriculture, 101(15), 6239–6247. doi: 10.1002/jsfa.11290 Search in Google Scholar

eISSN:
2344-150X
Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Industrial Chemistry, other, Food Science and Technology