1. bookVolume 26 (2022): Edizione 1 (June 2022)
Dettagli della rivista
License
Formato
Rivista
eISSN
2344-150X
Prima pubblicazione
30 Jul 2013
Frequenza di pubblicazione
2 volte all'anno
Lingue
Inglese
access type Accesso libero

The Analysis of Correlations Between Terpene Transformations and Fermentation Type of Apple Musts

Pubblicato online: 09 Jul 2022
Volume & Edizione: Volume 26 (2022) - Edizione 1 (June 2022)
Pagine: 99 - 108
Ricevuto: 10 Nov 2021
Accettato: 10 Mar 2022
Dettagli della rivista
License
Formato
Rivista
eISSN
2344-150X
Prima pubblicazione
30 Jul 2013
Frequenza di pubblicazione
2 volte all'anno
Lingue
Inglese
Abstract

We measured the concentration of 13 terpenes in musts of 3 different apple cultivars fermented spontaneously, with Ethanol RED yeast (Saccharomyces cerevisiae) or Cider Yeast (Saccharomyces bayanus). Then we analysed obtained data with PCA with various packages in R to assess how different types of fermentation and apple cultivars affected terpene profile. The most informative results of PCA were obtained in ‘psych’ package and they indicated that there were groups of terpenes which concentrations increased simultaneously, while for some other groups the content of particular compounds was negatively correlated. This suggests that the first group of terpenes originated from different substrates while the latter group could be obtained from the same compound. Our findings indicated new possible pathways of terpene transformation, e.g. linalool, citral and geraniol could transform into one another. Moreover, the role of S. bayanus in those processes remains unclear and it requires further consideration.

Keywords

1. Beaumont, R. (2012). An introduction to Principal Component Analysis & Factor Analysis Using SPSS 19 and R (psych package). April, 1–24. Search in Google Scholar

2. Bisotto, A., Julien, A., Rigou, P., Schneider, R., & Salmon, J. M. (2015). Evaluation of the inherent capacity of commercial yeast strains to release glycosidic aroma precursors from Muscat grape must. Australian Journal of Grape and Wine Research, 21(2), 194–199. https://doi.org/10.1111/ajgw.12127 Search in Google Scholar

3. Burdock, G. A. (2005). Fenaroli’s handbook of flavor ingredients, fourth edition. In Fenaroli’s Handbook of Flavor Ingredients, Fourth Edition. https://doi.org/10.1201/noe0849309465.fmatt Search in Google Scholar

4. Cal, K. (2006). Skin penetration of terpenes from essential oils and topical vehicles. Planta Medica, 72(4), 311–316. https://doi.org/10.1055/s-2005-916230 Search in Google Scholar

5. Cousin, F. J., Le Guellec, R., Schlusselhuber, M., Dalmasso, M., Laplace, J.-M., & Cretenet, M. (2017). Microorganisms in Fermented Apple Beverages: Current Knowledge and Future Directions. Microorganisms, 5(3), 39. https://doi.org/10.3390/microorganisms5030039 Search in Google Scholar

6. Esmaeili, A., Rohany, S., Safaiyan, S., & Zarei, S. A. (2011). Microbial transformation of citral by Aspergillus niger-PTCC 5011 and study of the pathways involved. Czech Journal of Food Sciences, 29(6), 610–615. https://doi.org/10.17221/237/2009-cjfs Search in Google Scholar

7. Esmaeili, A., & Tavassoli, A. (2010). Microbial transformation of citral by Penicillium sp. Acta Biochimica Polonica, 57(3), 265–268. https://doi.org/10.18388/abp.2010_2404 Search in Google Scholar

8. Espino-Díaz, M., Sepúlveda, D. R., González-Aguilar, G., & Olivas, G. I. (2016). Biochemistry of apple aroma: A review. Food Technology and Biotechnology, 54(4), 375–394. https://doi.org/10.17113/ftb.54.04.16.4248 Search in Google Scholar

9. Gunata, Y. Z., Bayonove, C. L., Baumes, R. L., & Cordonnier, R. E. (1985). The aroma of grapes I. Extraction and determination of free and glycosidically bound fractions of some grape aroma components. Journal of Chromatography A, 331(C), 83–90. https://doi.org/10.1016/0021-9673(85)80009-1 Search in Google Scholar

10. Günata, Z., Dugelay, I., Sapis, J. C., Baumes, R., & Bayonove, C. (1993). Role of the enzymes in the use of the flavour potential from grape glycosides in winemaking. In P. Schreier & P. Winterhalter (Eds.), Progress in flavour precursor studies (pp. 219–223). Allured Publishing Corporation. Search in Google Scholar

11. Isac-García, J., Dobado, J. A., Calvo-Flores, F. G., & Martínez-García, H. (2016). Advanced Organic Synthesis Experiments. In Experimental Organic Chemistry (1st ed., pp. 291–352). Elsevier Inc. https://doi.org/10.1016/b978-0-12-803893-2.50009-7 Search in Google Scholar

12. Januszek, M., Satora, P., & Tarko, T. (2020). Oenological Characteristics of Fermented Apple Musts and Volatile Profile of Brandies Obtained from Different Apple Cultivars. https://doi.org/10.3390/biom10060853737442832503312 Search in Google Scholar

13. Januszek, M., Satora, P., Wajda, Ł., & Tarko, T. (2020). Saccharomyces bayanus Enhances Volatile Profile of Apple Brandies. Molecules, 1–21. https://doi.org/10.3390/molecules25143127 Search in Google Scholar

14. Jin, D., Jin, S., Yu, Y., Lee, C., & Chen, J. (2017). Classification of Cannabis Cultivars Marketed in Canada for Medical Purposes by Quantification of Cannabinoids and Terpenes Using HPLC-DAD and GC-MS. Journal of Analytical & Bioanalytical Techniques, 08(01), 1–9. https://doi.org/10.4172/2155-9872.1000349 Search in Google Scholar

15. Jongedijk, E., Cankar, K., Buchhaupt, M., Schrader, J., Bouwmeester, H., & Beekwilder, J. (2016). Biotechnological production of limonene in microorganisms. Applied Microbiology and Biotechnology, 100(7), 2927–2938. https://doi.org/10.1007/s00253-016-7337-7 Search in Google Scholar

16. Paduch, R., Kandefer-Szerszeń, M., Trytek, M., & Fiedurek, J. (2007). Terpenes: Substances useful in human healthcare. Archivum Immunologiae et Therapiae Experimentalis, 55(5), 315–327. https://doi.org/10.1007/s00005-007-0039-1 Search in Google Scholar

17. Paramasivan, K., & Mutturi, S. (2017). Progress in terpene synthesis strategies through engineering of Saccharomyces cerevisiae. Critical Reviews in Biotechnology, 37(8), 974–989. https://doi.org/10.1080/07388551.2017.1299679 Search in Google Scholar

18. Pardo, E., Rico, J., Gil, J. V., & Orejas, M. (2015). De novo production of six key grape aroma monoterpenes by a geraniol synthase-engineered S. cerevisiae wine strain. Microbial Cell Factories, 14(1), 1–8. https://doi.org/10.1186/s12934-015-0306-5 Search in Google Scholar

19. Rivas, F., Parra, A., Martinez, A., & Garcia-Granados, A. (2013). Enzymatic glycosylation of terpenoids. Phytochemistry Reviews, 12(2), 327–339. https://doi.org/10.1007/s11101-013-9301-9 Search in Google Scholar

20. Satora, P., Sroka, P., Duda-Chodak, A., Tarko, T., & Tuszyński, T. (2008). The profile of volatile compounds and polyphenols in wines produced from dessert varieties of apples. Food Chemistry, 111(2), 513–519. https://doi.org/10.1016/j.foodchem.2008.04.007 Search in Google Scholar

21. Schneider, R., Razungles, A., Augier, C., & Baumes, R. (2001). Monoterpenic and norisoprenoidic glycoconjugates of Vitis vinifera L. cv. Melon B. as precursors of odorants in Muscadet wines. Journal of Chromatography A, 936(1–2), 145–157. https://doi.org/10.1016/S0021-9673(01)01150-5 Search in Google Scholar

22. Smith, L. I. (2002). A tutorial on Principal Components Analysis (Vol. 2, Issue 2). https://doi.org/10.1016/j.parepi.2017.04.003595268629774282 Search in Google Scholar

23. Wang, C., Liwei, M., Park, J. Bin, Jeong, S. H., Wei, G., Wang, Y., & Kim, S. W. (2018). Microbial platform for terpenoid production: Escherichia coli and Yeast. Frontiers in Microbiology, 9(OCT), 1–8. https://doi.org/10.3389/fmicb.2018.02460619490230369922 Search in Google Scholar

24. Williams, P. J., Sefton, M. A., & Wilson, B. (1989). Nonvolatile Conjugates of Secondary Metabolites as Precursors of Varietal Grape Flavor Components. In ACS Symposium Series (pp. 35–48). https://doi.org/10.1021/bk-1989-0388.ch004 Search in Google Scholar

25. Yuwono Siswandono, M., Hafid, A. F., Poernomo, A. T., Agil, M., Indrayanto, G., & Ebel, S. (2002). Analytical Profiles of Drug Substances and Excipients (H. G. Brittain (ed.)). Academic Press. https://books.google.pl/books?id=RMN5zMW64ZEC&dq=Yuwono+The+methylation+of+eugenol+to+methyleugenol+it+catalysed+by+an+S-adenosylmethionine+dependent+O-methyltransferase+(IEMT).&hl=pl&source=gbs_navlinks_s Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo