1. bookVolume 25 (2021): Edizione 2 (December 2021)
Dettagli della rivista
License
Formato
Rivista
eISSN
2344-150X
Prima pubblicazione
30 Jul 2013
Frequenza di pubblicazione
2 volte all'anno
Lingue
Inglese
access type Accesso libero

Alterations in health-related fatty acids in buffalo milk after processing to traditional dairy products

Pubblicato online: 30 Dec 2021
Volume & Edizione: Volume 25 (2021) - Edizione 2 (December 2021)
Pagine: 211 - 220
Ricevuto: 12 Oct 2021
Accettato: 01 Dec 2021
Dettagli della rivista
License
Formato
Rivista
eISSN
2344-150X
Prima pubblicazione
30 Jul 2013
Frequenza di pubblicazione
2 volte all'anno
Lingue
Inglese
Abstract

Milk provides some beneficial fatty acids which in dairy processing are subjected to pasteurization and fermentation. With the aim to assess such changes, aliquot parts of milk from 12 buffaloes were pooled and processed to germinated yoghurt and brined cheese, and to non-germinated curd – the respective samples of raw and dairy material subjected to lipid analysis. The results show that in cheese positive and negative changes are generally balanced, rumenic acid decreasing and other CLAs altered but not total CLA and PUFA; omega ratio and atherogenicity index worsened to little extent, due to adverse change in n-3, myristic and lauric acid. In yoghurt and curd CLA dramatically decreased, excluding rumenic acid; but vaccenic acid increased, though total trans isomers decreased; the worsened n-6/n-3 ratio and atherogenicity index is mostly because of the adverse effect on PUFAn-3 but also on myristic and lauric acid. In all products SFA and MUFA did not change, including palmitic, stearic, and oleic acid. It can be concluded that the decrease of CLA in yoghurt and curd is partially compensated by the increase in the vaccenic acid, while cheese making altered individual isomers but not groups of beneficial acids.

Keywords

1. Abesinghe, A.M.N.L., Priyashantha, H, Prasanna, P.H.P., Kurukulasuriya, M.S., Ranadheera, C.S. & Vidanarachchi, J.K. (2020). Inclusion of probiotics into fermented buffalo (Bubalus bubalis) milk: an overview of challenges and opportunities. Fermentation, 6, 121. DOI: 10.3390/fermentation604012110.3390/fermentation6040121 Search in Google Scholar

2. Abd El-Salam, M.H. & El-Shibiny, S. (2011). A comprehensive review on the composition and properties of buffalo milk. Dairy Science and Technology, 91: 663-699. DOI: 10.1007/s13594-011-0029-210.1007/s13594-011-0029-2 Search in Google Scholar

3. Ahmad, S., Anjum, F.M., Huma, H., Sameen, A. & Zahoor, T. (2013). Composition and physico-chemical characteristics of buffalo milk with particular emphasis on lipids, proteins, minerals, enzymes and vitamins. The Journal of Animal and Plant Sciences, 23 (Suppl. 1), 62-74. Retrieved October 7, 2021: http://www.thejaps.org.pk/docs/Supplementary/vol-3-sup-1/14.pdf Search in Google Scholar

4. Ariota, B., Campanile, G., Potena, A., Napolano, R., Gasparrini, B., Neglia, G. & Di Palo, R. (2007). Ca and P in buffalo milk: curd yield and milk clotting parameters. Italian Journal of Animal Science, 6, 497-499. DOI: 10.4081/ijas.2007.1s.49710.4081/ijas.2007.1s.497 Search in Google Scholar

5. Barceló-Coblijn, G. & Murphy, E.J. (2009). Alpha-linolenic acid and its conversion to longer chain n-3 fatty acids: Benefits for human health and a role in maintaining tissue n-3 fatty acid levels. Progress in Lipid Research, 48, 355-374. DOI: 10.1016/j.plipres.2009.07.00210.1016/j.plipres.2009.07.00219619583 Search in Google Scholar

6. Barron, L., Labastida, E., Perea, S., Chavarri, F., Vega, C., Vicente, M., Torres, M., Najera, A., Virto, M., Santisteban, A., Perez-Elortonto, F., Albisu, M., Salmeron, J., Mendia, C., Torre, P., Ibanez, C. & Renobales, M. (2001). Seasonal changes in the composition of bulk raw ewe’s milk used for Idiazabal cheese manufacture. International Dairy Journal, 11, 771–778. DOI: 10.1016/S0958-6946(01).00120-0 Search in Google Scholar

7. Becskei, Z., Savić, M., Ćirković, D., Rašeta, M., Puvača, N., Pajić, M., Đorđević, S., Paskaš, S. (2020). Assessment of Water Buffalo Milk and Traditional Milk Products in a Sustainable Production System. Sustainability, 12(16): 6616. DOI: 10.3390/su1216661610.3390/su12166616 Search in Google Scholar

8. Belury, M.A. (2002). Dietary conjugated linoleic acid in health: Physiological effects and mechanisms of action. Annual Review of Nutrition, 22, 505-531. DOI: 10.1146/annurev.nutr.22.021302.12184210.1146/annurev.nutr.22.021302.12184212055356 Search in Google Scholar

9. Bergamaschi, M. & Bittante, G. (2017). Detailed fatty acid profile of milk, cheese, ricotta and by products, from cows grazing summer highland pastures. Journal of Dairy Research, 84(03), 329-338. DOI: 10.1017/S002202991700045010.1017/S002202991700045028831975 Search in Google Scholar

10. Bonanno, A., Tornambè, G., Bellina, V., De Pasquale, C., Mazza, F., Maniaci, G. & Di Grigoli, A. (2013). Effect of farming system and cheesemaking technology on the physicochemical characteristics, fatty acid profile, and sensory properties of Caciocavallo Palermitano cheese. Journal of Dairy Science, 96, 1-15. DOI: 10.3168/jds.2012-597310.3168/jds.2012-597323127907 Search in Google Scholar

11. Buckley, J.D. & Howe, P.R.C. (2010). Long-chain omega-3 polyunsaturated fatty acids may be beneficial for reducing obesity — a review. Nutrients, 2, 1212-1230. DOI: 10.3390/nu212121210.3390/nu2121212325762622254005 Search in Google Scholar

12. Calder, P.C. (2007). Dietary arachidonic acid: harmful, harmless or helpful? British Journal of Nutrition, 98, 451–453. DOI: 10.1017/S000711450776177910.1017/S000711450776177917705889 Search in Google Scholar

13. Chandan, R.C. & O’Rell, K.R. (2006). Principles of yogurt processing, In: R.C. Chandanet al. (Eds.) Manufacturing Yogurt and Fermented Milks (pp. 195-209), Blackwell Publishing: Oxford, UK. DOI: 10.1002/9780470277812.ch1210.1002/9780470277812.ch12 Search in Google Scholar

14. Corazzin, M., Romanzin, A., Sepulcri, A., Pinosa, M., Piasentier, E. & Bovolenta, S. (2019). Fatty acid profiles of cow’s milk and cheese as affected by mountain pasture type and concentrate supplementation. Animals, 9, 68. DOI: 10.3390/ani902006810.3390/ani9020068640627330813311 Search in Google Scholar

15. Dave, R.I., Ramaswamy, N. & Baer, R.J. (2002). Changes in fatty acid composition during yogurt processing and their effects on yogurt and probiotic bacteria in milk procured from cows fed different diets. Australian Journal of Dairy Technology, 57, 197-202. Retrieved October 7, 2021, from Research Gate database: https://www.researchgate.net/publication/279572507 Search in Google Scholar

16. Destaillats, F. & Angers, P. (2005). Thermally induced formation of conjugated isomers of linoleic acid. European Journal of Lipid Science and Technology, 107, 167-172. DOI: 10.1002/ejlt.20040108810.1002/ejlt.200401088 Search in Google Scholar

17. Dilzer, A. & Park, Y. (2012). Implication of conjugated linoleic acid (CLA) in human health. Critical Reviews in Food Science and Nutrition, 52, 488-513. DOI: 10.1080/10408398.2010.50140910.1080/10408398.2010.50140922452730 Search in Google Scholar

18. Ebringer, L, Ferenčik, M. & Krajčovič, J. (2008). Beneficial health effects of milk and fermented dairy products — review. Folia Microbiologica, 53, 378-394. DOI: 10.1007/s12223-008-0059-110.1007/s12223-008-0059-119085072 Search in Google Scholar

19. Field, C.J., Blewett, H.H., Proctor, S. & Vine, D. (2009). Human health benefits of vaccenic acid. Applied Physiology, Nutrition and Metabolism, 34: 979–991. DOI: 10.1139/H09-07910.1139/H09-07919935865 Search in Google Scholar

20. Gassem, M.A., Osman, M.A., Ahmed, I.A.M., Abdel, R.I., Fadol, M. & Al-Maiman, S. (2016). Effect of fermentation by selected lactic acid bacteria on the chemical composition and fatty acids of camel milk. Journal of Camel Practice and Research, 23, 277-281. DOI: 10.5958/2277-8934.2016.00046.110.5958/2277-8934.2016.00046.1 Search in Google Scholar

21. Gerchev, G. & Mihaylova, G. (2012). Milk yield and chemical composition of sheep milk in Srednostaroplaninska and Tetevenska breeds. Biotechnology in Animal Husbandry, 28(2), 241-251. DOI: 10.2298/BAH1202241G10.2298/BAH1202241G Search in Google Scholar

22. German, J. (1999). Butyric acid – a role in cancer prevention. Nutrition Bulletin, 24, 293–299. DOI: 10.1111/j.1467-3010.1999.tb00910.x10.1111/j.1467-3010.1999.tb00910.x Search in Google Scholar

23. Givens, D.I. &, Shingfield, K.J. (2006). Optimizing dairy milk fatty acid composition. In: C. Williams & J. Buttriss (Eds.) Improving the Fat Content of Foods (pp. 252-280). Woodhead Publishing Limited. Cambridge, UK. DOI: 10.1533/9781845691073.2.25210.1533/9781845691073.2.252 Search in Google Scholar

24. Guinee, T.P., Auty, M., Mullins, C., Corcoran, M. & MulHolland, E. (2000). Preliminary observation on effects of fat content and degree of fat emulsification on the structure-functional relationship of Cheddar-type cheese. Journal of Texture Studies, 31, 645–663. DOI: 10.1111/j.1745-4603.2000.tb01026.x10.1111/j.1745-4603.2000.tb01026.x Search in Google Scholar

25. Gutiérrez, L.F. (2016). Conjugated linoleic acid in milk and fermented milks: Variation and effects of the technological processes. Vitae, 23, 134–145. DOI: 10.17533/udea.vitae.v23n2a0610.17533/udea.vitae.v23n2a06 Search in Google Scholar

26. Güler, Z. (2005). Quantification free fatty acids and flavour characteristics of Kasar cheeses. Journal of Food Lipids, 12, 209-221. DOI: 10.1111/j.1745-4522.2005.00018.x10.1111/j.1745-4522.2005.00018.x Search in Google Scholar

27. Haug, A., Høstmark, A.T. & Harstad, O.M. (2007). Bovine milk in human nutrition – a review. Lipids in Health and Diseases, 6, 25. DOI: 10.1186/1476-511X-6-2510.1186/1476-511X-6-25203973317894873 Search in Google Scholar

28. Ilieva, Y., Ivanova, I. & Penchev, P. (2020). Fatty-acid composition of buffalo milk under intensive and pasture farming. Journal of Central European Agriculture, 21, 722-732. DOI: /10.5513/JCEA01/21.4.293510.5513/JCEA01/21.4.2935 Search in Google Scholar

29. Islam, M.A., Alam, M. K., Islam, M. N., Khan, M. A. S., Ekeberg, D., Rukke, E. O. & Vegarud, G.E. (2014). Principal milk components in buffalo, Holstein cross, indigenous cattle and Red Chittagong Cattle from Bangladesh. Asian-Australasian Journal of Animal Sciences, 27, 886-897. DOI: 10.5713/ajas.2013.1358610.5713/ajas.2013.13586409316625050028 Search in Google Scholar

30. Ivanov, G.I., Balabanova, M., Ivanova, M. & Vlaseva, R. (2016). Comparative study of Bulgarian white brined cheese from cow and buffalo milk. Bulgarian Journal of Agricultural Science, 22, 643-646. Search in Google Scholar

31. Ivanova, S. & Angelov, L. (2017a). Assessment of the content of dietary trans fatty acids and biologically active substances in cow’s milk and white brined cheese. Eurasian Union Of Scientists, 42, 18-24. Search in Google Scholar

32. Ivanova, S. & Angelov, L. (2017b). Assessment of the content of dietary trans fatty acids and biologically active substances in cow’s milk and curd. Modern Chemistry, 5, 86-92. Retrieved October 7, 2021 from: 11648/j.mc.20170506.1110.11648/j.mc.20170506.11 Search in Google Scholar

33. Ivanova, S., Miteva, D., Nacheva, I. & Tsvetkov, T. (2011). Assessment of the effect of the technological processing and the storage term on the fatty acid composition of buffalo yoghurt. Bulgarian Journal of Agricultural Science, 17, 269-276. Search in Google Scholar

34. Khalid, N. & Marth, E. (1996). Lactobacilli – their enzymes and role in ripening and spoilage of cheese: a review. Journal of Dairy Scence, 73, 2669–2684. Retrieved October 7, 2021 from: https://www.journalofdairyscience.org/article/S0022-0302(90)78952-7/pdf Search in Google Scholar

35. Khan, T.I., Nadeem, M., Imran, M., Asif, M., Khan, K.M., Din, A. & Ullah, R. (2019). Triglyceride, fatty acid profile and antioxidant characteristics of low melting point fractions of buffalo milkfat. Lipids in Health and Diseases, 18, 1–11. DOI: 10.1186/s12944-019-0995-610.1186/s12944-019-0995-6640878130851732 Search in Google Scholar

36. Laskaridis, K., Serafeimidou, A., Zlatanos, S., Gylou, E., Kontorepanidou, E. & Sagredos, A. (2013). Changes in fatty acid profile of feta cheese including conjugated linoleic acid. Journal of the Science of Food and Agriculture, 93, 2130-2136. DOI: 10.1002/jsfa.6018.10.1002/jsfa.601823288564 Search in Google Scholar

37. Lawson, R.E., Moss, A.R. & Givens, D.I. (2001). The role of dairy products in supplying conjugated linoleic acid to man’s diet, a review. Nutrition Research Reviews, 14, 153-172. DOI: 10.1079/NRR200121 Search in Google Scholar

38. Leaf, A. (2008). Historical overview of n−3 fatty acids and coronary heart disease. The American Journal of Clinical Nutrition, 87, 1978-1980. DOI: 10.1093/ajcn/87.6.1978S10.1093/ajcn/87.6.1978S18541598 Search in Google Scholar

39. Lin, T.Y., Lin C.W. & Lee, C.H. (1999). Conjugated linoleic acid concentration as affected by lactic cultures and added linoleic acid. Food Chemistry, 67, 1–5. DOI: 10.1016/S0308-8146(99).00077-1 Search in Google Scholar

40. Martínez-Monteagudo, S.I. & Saldaña, M.D.A. (2014). Modeling the retention kinetics of conjugated linoleic acid during high-pressure sterilization of milk. Food Research International, 62, 169-176. DOI: 10.1016/j.foodres.2014.02.01410.1016/j.foodres.2014.02.014 Search in Google Scholar

41. Moio, L., Dekimpe, J., Etievant, P. & Addeo, F. (1993). Neutral volatile compounds in the raw milks from different species. Journal of Dairy Research, 60, 199–213. DOI: 10.1017/S002202990002751510.1017/S0022029900027515 Search in Google Scholar

42. Naydenova, N. (2005). Biological and technological properties of buffalo milk from the Bulgarian Murrah breed in dairy products manufacturing. PhD Thesis, Trakia University, Stara Zagora (in Bulgarian). Search in Google Scholar

43. Naydenova, N., Iliev, T. & Mihaylova, G. (2013). Fatty acids and lipid indices of buffalo milk yogurt. Agricultural Science and Technology, 5, 331–334. Retrieved October 5, 2021 from: http://www.unisz.bg/ascitech/3_2013/020 Search in Google Scholar

44. Nguyen, H.T.H., Ong, L., Lefèvre, C., Kentish, S.E. & Gras, S.L. (2014). The microstructure and physicochemical properties of probiotic buffalo yoghurt during fermentation and storage: a comparison with bovine yoghurt. Food and Bioprocess Technology, 7, 937-953. DOI: 10.1007/s11947-013-1082-z10.1007/s11947-013-1082-z Search in Google Scholar

45. Parodi, P. (2004). Milk in human nutrition. Australian Journal of Dairy Technology, 59, 3-59. Retrieved October 7, 2021, from Research Gate database: https://www.researchgate.net/publication/279704558 Search in Google Scholar

46. Ramamurthy, M. K. & Narayanan, K.M. (1971). Fatty acid composition of buffalo and cow milk fats by gas-liquid chromatography (GLC). Milchwissenschaft, 26, 693-697. Retrieved October 7, 2021, from CAB Direct database: https://www.cabdirect.org/cabdirect/abstract/19721492856 Search in Google Scholar

47. Santos-Junior, O.O., Pedrao, M.R., Dias, L.F., Paula, L.N., Coro, F.A.G. & De Souza, N.E. (2012). Fatty acid content of bovine milkfat from raw milk to yoghurt. American Journal of Applied Sciences, 9, 1300-1306. DOI: 10.3844/ajassp.2012.1300.130610.3844/ajassp.2012.1300.1306 Search in Google Scholar

48. Schwingshackl, L. & Hoffmann, G. (2012). Monounsaturated fatty acids and risk of cardiovascular disease: synopsis of the evidence available from systematic reviews and meta-analyses. Nutrients, 4, 1989–2007. DOI: 10.3390/nu412198910.3390/nu4121989354661823363996 Search in Google Scholar

49. Sommella, E., Basilicata, M.G., Tenore, G.C., Manfra, M., Mastrocinque, R., Ostacolo, C., Vitale, A., Chieppa, M., Campiglia, P. & Pepe, G. (2018). Modification of lipid profile in commercial cow milk samples before and after their expiration date: evaluation of storage crucial parameters and possible environmentally friendly disposal alternatives. Journal of Food Quality, 4, 1-8. DOI: 10.1155/2018/875131710.1155/2018/8751317 Search in Google Scholar

50. Sumarmono, J., Sulistyowati, M. & Soenarto (2015). Fatty acids profiles of fresh milk, yogurt and concentrated yogurt from Peranakan Etawah goat milk. Procedia Food Science, 3, 216-222. 10.1016/j.profoo.2015.01.02410.1016/j.profoo.2015.01.024 Search in Google Scholar

51. Sun, C., O’Connor, C. & Roberton, A. (2002). Theantimicrobial properties of milk fat after partial hydrolysis by calf pregastric lipase. Chemico-Biological Interactions, 140, 185–198. DOI: 10.1016/s0009-2797(02).00016-9 Search in Google Scholar

52. Thierry, A., Collins, Y.F., Abeijón Mukdsi, M.C., McSweeney, P.L.H., Wilkinson, M.G. & Spinnler, H.E. (2016). Lipolysis and metabolism of fatty acids in cheese. In: P.L.H. McSweeney et al. (Eds.) Cheese: Chemistry, Physics and Microbiology (Fourt Edition) (pp. 423-444). Academic Press. DOI: 10.1016/B978-0-12-417012-4.00017-X10.1016/B978-0-12-417012-4.00017-X Search in Google Scholar

53. Thormar, H. & Hilmarsson, H. (2007). The role of microbicidal lipids in host defense against pathogens and their potential as therapeutic agents. Chemistry and Physics of Lipids, 150, 1–11. DOI: 10.1016/j.chemphyslip.2007.06.22010.1016/j.chemphyslip.2007.06.22017686469 Search in Google Scholar

54. Turpeinen, A.M., Mutanen, M., Aro, A., Salminen, I., Basu, S., Palmquist, D.L. & Griinari, J.M. (2002). Bioconversion of vaccenic acid to conjugated linoleic acid in humans. The American Journal of Clinical Nutrition, 76, 504-510. DOI: 10.1093/ajcn/76.3.50410.1093/ajcn/76.3.50412197992 Search in Google Scholar

55. Ulbricht, T.L.V. & Southgate, D.A.T. (1991). Coronary heart disease, seven dietary factors. The Lancet, 338, 985-992. DOI: 10.1016/0140-6736(91).91846-M Search in Google Scholar

56. Van de Water, J., Keen, C.L. & Gershwin, M.E. (1999). The influence of chronic yogurt consumption on immunity. Journal of Nutrition, 129, 1492S-1495S. DOI: 10.1093/jn/129.7.1492S10.1093/jn/129.7.1492S10395628 Search in Google Scholar

57. Van Nieuwenhove, C.V., Cano, P.G., Chaia, A.P. & González, S. (2007). Chemical composition and fatty acid content of buffalo cheese from northwest Argentina: effect on lipid composition of mice tissues. Journal of Food Lipids, 14, 232–243. DOI: 10.1111/j.1745-4522.2007.00082.x10.1111/j.1745-4522.2007.00082.x Search in Google Scholar

58. Vargas-Bello-Pérez, E. & Garnsworthy, P.C. (2013). Trans fatty acids and their role in the milk of dairy cows. Ciencia e Investigacion Agraria, 40, 449-473. DOI: 10.4067/S0718-1620201300030000110.4067/S0718-16202013000300001 Search in Google Scholar

59. Yang, B., Chen, H., Gu, Z., Tian, F., Ross, R. P., Stanton, C., Chen, Y.Q., Chen, W. & Zhank, H. (2014). Synthesis ofconjugated linoleic acid by the linoleate isomerase complex in food-derived lacto-bacilli.. Journal of Applied Microbiology, 117, 430–439. DOI: 10.1111/jam.12524.10.1111/jam.12524430659124750362 Search in Google Scholar

60. Zicarelli, L. (2004). Buffalo milk, its properties, dairy yield and mozzarella production. Veterinary Research Communications, 28, 127-135. DOI: 10.1023/B:VERC.0000045390.81982.4d10.1023/B:VERC.0000045390.81982.4d Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo