Accesso libero

Process Optimization for Dietary Fiber Production from Cassava Pulp Using Acid Treatment

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. AACC. (2001). The definition of dietary fiber. Cereal Foods World. 46(3), 112–129.Search in Google Scholar

2. Ahmed, S.Y., Ghildyal, N.P., Kunhi, A.A.M. & Lonsane, B.K. (1983). Confectioner’s syrup from tapioca processing waste. Starch/Stärke. 35, 430–432.10.1002/star.19830351207Search in Google Scholar

3. Anderson, M.J. & Whitcomb, P.J. (2005). RSM simplified – optimizing processes using response surface methods for design of experiments. New York: Productivity Press.Search in Google Scholar

4. AOAC. (1995). Official Method of Analysis (16th ed). Virginia: The Association of Official Agricultural Chemists.Search in Google Scholar

5. Artati, E.K. & Andik, P.A. (2006). Effect of acid concentration on starch hydrolysis of banana. Ekuilibrium. 5(1), 8-12.Search in Google Scholar

6. Atichokudomchai, N., Shobsngob, S., Chinachoti, P. & Varavinit, S. (2001). A study of some physicochemical properties of high-crystalline tapioca starch. Starch/Stärke. 53, 577-581.10.1002/1521-379X(200111)53:11<577::AID-STAR577>3.0.CO;2-0Search in Google Scholar

7. Caprez, A., Arrigoni, E., Amado, R. & Neukom, H. (1986). Influence of different types of thermal treatment on the chemical composition and physical properties of wheat bran. Journal of Cereal Science. 4, 233-239. DOI: 10.1016/S0733-5210(86)80025-X.10.1016/S0733-5210(86)80025-XOpen DOISearch in Google Scholar

8. Carvalho, A.F.U., Portela, M.C.C., Sousa, M.B., Martins, F.S., Rocha, F.C., Farias, D.F. & Feitosa, J.P.A. (2009). Physiological and physico-chemical characterization of dietary fibre from the green seaweed Ulva fasciata Delile. Brazilian Journal of Biology. 69(3), 969-977. DOI: 10.1590/s1519-69842009000400028.10.1590/S1519-69842009000400028Search in Google Scholar

9. CDMI. (2014). Study of business potential and main actor of tapioca industry in Indonesia, 2015-2018. Jakarta: PT. Central Data Mediatama Indonesia.Search in Google Scholar

10. Chaikaew, S., Maeno, Y., Visessanguan, W., Ogura, K., Sugino, G., Lee, S.H. & Ishikawa, K. (2012). Application of thermophilic enzymes and water jet system to cassava pulp. Bioresource Technology. 126, 87-91. DOI: 10.1016/j.biortech.2012.09.020.10.1016/j.biortech.2012.09.020Search in Google Scholar

11. Choct M. (2002). Non-starch polyccharides: effect on nutritive value. In J.M. McNab & K.N. Boorman (Eds.), Poultry Feedstuffs: supply, composition, and nutritive value (pp. 221-237). Oxon: CABI Publishing.10.1079/9780851994642.0221Search in Google Scholar

12. Elleuch, M., Bedigian, D. & Roiseux O. (2010). Dietary fiber and fiber-rich by-products of food processing: characterization, technological functionality and commercial application: a review. Food Chemistry. 124, 411–421. DOI: 10.1016/j.foodchem.2010.06.077.10.1016/j.foodchem.2010.06.077Open DOISearch in Google Scholar

13. Fan, G., Han, Y., Gu, Z. & Chen, D. (2008). Optimization conditions for anthocyanins extraction from purple sweet potato using response surface methodology (RSM). Food Science and Technology. 41, 155-160. DOI: 10.1016/j.lwt.2007.01.019.10.1016/j.lwt.2007.01.019Open DOISearch in Google Scholar

14. Gaman, P.M. & Sherrington, K.B. (1981). The science of food (2nd ed). New York: Pergamon Press. p:48-59.10.1016/B978-0-08-025895-9.50011-5Search in Google Scholar

15. Gómez-Ordóñez, E., Jiménez-Escrig, A. & Rupérez, P. (2010). Dietary fibre and physicochemical properties of several edible seaweeds from the northwestern Spanish coast. Food Research International. 43, 2289-2294. DOI: 10.1016/j.foodres.2010.08.005.10.1016/j.foodres.2010.08.005Open DOISearch in Google Scholar

16. Hermiati, E. (2012). Process engineering for cassava pulp hydrolysis using micro wave heating for ethanol production. Doctoral disertation, Institut Pertanian Bogor, Bogor, Indonesia.Search in Google Scholar

17. Hodge, D.B., Andersson, C., Berglund, K.A. & Rova, U. (2009). Detoxification requirements for bioconversion of softwood dilute acid hydrolyzates to succinic acid. Enzyme and Microbial Technology. 44, 309–316. DOI: 10.1016/j.enzmictec.2008.11.007.10.1016/j.enzmictec.2008.11.007Open DOISearch in Google Scholar

18. Kinsella, L.E. (1976). Functional properties of protein in foods: A survey. Journal of Food Science and Nutrition. 7, 219-280. DOI: 10.1080/10408397609527208.10.1080/10408397609527208Open DOISearch in Google Scholar

19. Kumari, K.S., Babu, I.S. & Rao, G.H. (2008). Process optimization for citric acid production from raw glycerol using response surface methodology. Indian Journal of Biotechnology. 7, 496-501. http://hdl.handle.net/123456789/2353.Search in Google Scholar

20. Lacourse, N.L., Chicalo, K., Zallie, J.P. & Altieri P.A. (1994). U.S. Patent US5350593A. Wilmington: U.S. Patent and Trademark Office.Search in Google Scholar

21. Lv, J-S., Liu, X-y., Zhang, X-p. & Wang, L-s. (2017). Chemical composition and functional characteristics of dietary fiber-rich powder obtained from core of maize straw. Food Chemistry. DOI: 10.1016/j.foodchem.2017.01.078.10.1016/j.foodchem.2017.01.078Open DOISearch in Google Scholar

22. Marsono, M.S. (2004). Dietary fiber in perspective of nutrition science. Yogyakarta: Universitas Gadjah Mada.Search in Google Scholar

23. Matin, H.R.H., Shariatmadari, F. & Torshizi, M.A.K. (2013). Various physico-chemical properties of dietary fiber sources of poultry diets. International journal of agriculture and crop sciences. 6(18),1239-1245.Search in Google Scholar

24. Montgomery, D. C. (2008). Design and analysis of experiments (7th ed). New Jersey: John Wiley & Sons.Search in Google Scholar

25. Moorman, W.F.B., Moon, N.J. & Worthington, R.E. (1983). Physical properties of dietary fiber and binding of mutagens. Journal of Food Science. 48, 1010-1011. DOI: 10.1111/j.1365-2621.1983. tb14959.x.10.1111/j.1365-2621.1983.tb14959.xOpen DOISearch in Google Scholar

26. Mussatto, S.I. & Roberto, I.C. (2001). Hydrolysate detoxification with activated charcoal for xylitol production by Candida guilliermondii. Biotechnology Letters. 23,1681-1684. DOI: 10.1023/A:1012492028646.10.1023/A:1012492028646Open DOISearch in Google Scholar

27. Nelson, A. L. (2001). High-fiber ingredients: Eagan press handbook series. St Paul, MN: Eagan Press.10.1094/1891127233Search in Google Scholar

28. Palmqvist, E. & Hagerdal, B.H. (2000). Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresource Technology. 74, 17-24.10.1016/S0960-8524(99)00160-1Search in Google Scholar

29. Paton, D. & Spratt, W. A. (1984). Component interactions in the extrusion cooking process conditions on the functional viscosity of the wheat flour system. Journal of Food Science. 49, 1380-1385. DOI: 10.1111/j.1365-2621.1984.tb14995.x.10.1111/j.1365-2621.1984.tb14995.xOpen DOISearch in Google Scholar

30. Rattanachomsri, U., Tanapongpipat, S., Eurwilaichitr, L. & Champreda, V. (2009). Simultaneous non-thermal saccharification of cassava pulp by multi-enzyme activity and ethanol fermentation by Candida tropicalis. Journal of Bioscience and Bio Engineering. 107, 488-493. DOI: 10.1016/j.jbiosc.2009.06.012.10.1016/j.jbiosc.2009.06.012Open DOISearch in Google Scholar

31. Srikanta, S., Jaleel, S.A., Ghildyal, N.P., Lonsane, B.K. & Karanth, N.G. (1987). Novel technique for saccharification of cassava fibrous waste for alcohol production. Starch/Stärke. 39, 234–237.10.1002/star.19870390705Search in Google Scholar

32. Sriroth, K., Chollakup, R., Chotineeranat, S., Piyachomkwan, K. & Oates, C.G. (2000). Processing of cassava waste for improved biomass utilization. Bioresource Technology. 71, 63-69. DOI: 10.1016/s0960-8524(99)00051-6.10.1016/s0960-8524(99)00051-6Open DOISearch in Google Scholar

33. Suzuki, T., Oshugi, Y., Yoshiem, Y., Shirai, T. & Hirano, T. (1996). Dietary fibre content, water holding capacity and binding capacity of seaweeds. Journal of Fisheries Sciences. 62, 445-446. DOI: 10.2331/fishsci.62.454.10.2331/fishsci.62.454Open DOISearch in Google Scholar

34. Tufeanu, R. & Tița, O. (2016). Possibilities to develop low-fat products: a review. Acta Universitatis Cibiniensis Series E: Food Technology. 20(1), 3-19. DOI: 10.1515/aucft-2016-0001.10.1515/aucft-2016-0001Open DOISearch in Google Scholar

35. Vaithanomsat, P., Kosugi, A., Apiwatanapiwat, W., Thanapase, W., Waeonukul, R., Tachaapaikoon, C., Pason, P. & Moriet, Y. (2016). Efficient saccharification for non-treated cassava pulp by supplementation of Clostridium thermocellum cellulosome and Thermoanaerobacter brockii β-glucosidase. Bioresource Technology. 132, 383–386. DOI: 10.1016/j.biortech.2012.11.023.10.1016/j.biortech.2012.11.02323245453Open DOISearch in Google Scholar

36. Virunanon, C., Ouephanit, C., Burapatana, V. & Chulalaksananukul, W. (2013). Cassava pulp enzymatic hydrolysis process as a preliminary step in bio-alcohols production from waste starchy resources. Journal of Cleaner Production. 39, 273-279. DOI:10.1016/j.jclepro.2012.07.055.10.1016/j.jclepro.2012.07.055Open DOISearch in Google Scholar

37. Wahyudi, J., Wibowo, W.A., Rais, Y.A. & Kusumawardani, A. (2011). Effect of temperature on glucose levels formed and constants rate reaction on banana skin hydrolysis. Proceedings of the National Seminar on Chemical Engineering Kejuangan, 22 February 2011 (p.B09-1 –B09-5). Yogyakarta: Universitas Pembangunan Nasional.Search in Google Scholar

38. Yasutmasu, K., Sawada, K., Moritaka, S., Nfisaki, M., Toda, J., Wada, T. & Ishi, K. (1972). Whipping and emulsifying properties of soybean products. Agricultural and Biological Chemistry. 36, 719–737. DOI: 10.1271/bbb1961.36.719.10.1271/bbb1961.36.719Open DOISearch in Google Scholar

39. Zhang, M., Xie, L., Yin, Z., Khanal, S.K. & Zhou, Q. (2016). Biorefinery approach for cassava-based industrial wastes: current status and opportunities. Bioresource Technology. 215, 50–62. DOI: 10.1016/j.biortech.2016.04.026.10.1016/j.biortech.2016.04.02627117291Open DOISearch in Google Scholar

eISSN:
2344-150X
Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Industrial Chemistry, other, Food Science and Technology