Accesso libero

Sustainable Bioproduct Production via Anaerobic Bioconversion by Landfill Soil Inoculum in Various Carbohydrate Wastes

INFORMAZIONI SU QUESTO ARTICOLO

Cita

ABDEL-RAHMAN, M. A. – TASHIRO, Y. – SONOMOTO, K. 2011. Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: Overview and limits. In Journal of Biotechnology, vol. 156, no. 4, pp. 286–301. DOI: https://doi.org/10.1016/J.JBIOTEC.2011.06.017 Search in Google Scholar

AJALA, E. O. – OLONADE, Y. O. – AJALA, M. A. – AKINPELU, G. S. 2020. Lactic acid production from lignocellulose – A review of major challenges and selected solutions. In Chemical and Biochemical Engineering Reviews, vol. 7, no. 2, pp. 38–49. DOI: https://doi.org/10.1002/cben.201900018 Search in Google Scholar

ATASOY, M. – CETECIOGLU, Z. 2022. The effects of pH on the production of volatile fatty acids and microbial dynamics in long-term reactor operation. In Journal of Environmental Management, vol. 319, article no. 115700. DOI: https://doi.org/10.1016/j.jenvman.2022.115700 Search in Google Scholar

ATASOY, M. – OWUSU-AGYEMAN, I. – PLAZA, E. – CETECIOGLU, Z. 2018. Bio-based volatile fatty acid production and recovery from waste streams: Current status and future challenges. In Bioresource Technology, vol. 268, pp. 773–786. DOI: https://doi.org/10.1016/j.biortech.2018.07.042 Search in Google Scholar

BAIRD, R. B. – EATON, A. D. – RICE, E. W. 2017. Standard Methods for the Examination of Water and Wastewater (23rd ed.). Washington, D. C. : American Public Health Association, American Water Works Association, Water Environment Federation, 1796 pp. ISBN 9780875532875. Search in Google Scholar

BUJOCZEK, G. – OLESZKIEWICZ, J. – SPARLING, R. – CENKOWSKI, S. 2000. High solid anaerobic digestion of chicken manure. In Journal of Agricultural and Engineering Research, vol. 76, no. 1, pp. 51–60. DOI: https://doi.org/10.1006/jaer.2000.0529 Search in Google Scholar

CAVINATO, C. – DA ROS, C. – PAVAN, P. – BOLZONELLA, D. 2017. Influence of temperature and hydraulic retention on the production of volatile fatty acids during anaerobic fermentation of cow manure and maize silage. In Bioresource Technology, vol. 223, pp. 59–64. DOI: https://doi.org/10.1016/j.biortech.2016.10.041 Search in Google Scholar

CHERGUI, D. – AKRETCHE-KELFAT, S. – LAMOUDI, L. – AL-RSHAIDAT, M. – BOUDJELAL, F. – AIT-AMAR, H. 2021. Optimization of citric acid production by Aspergillus niger using two downgraded Algerian date varieties. In Saudi Journal of Biological Sciences, vol. 28, no. 12, pp. 7134–7141. DOI: https://doi.org/10.1016/j.sjbs.2021.08.013 Search in Google Scholar

CHO, S. J. – KIM, M. H. – LEE, Y. O. 2016. Effect of pH on soil bacterial diversity. In Journal of Ecology and Environment, vol. 40, article no. 10. DOI: https://doi.org/10.1186/s41610-016-0004-1 Search in Google Scholar

DARWIN – CHARLES, W. – CORD-RUWISCH, R. 2019a. Anaerobic acidification of sugar-containing wastewater for biotechnological production of organic acids and ethanol. In Environmental Technology, vol. 40, no. 25, pp. 3276–3286. DOI: https://doi.org/10.1080/09593330.2018.1468489 Search in Google Scholar

DARWIN – TRIOVANTA, U. – RINALDI, R. – PRATAMA, A. 2019b. Anaerobic acidification of coconut water waste by Lactobacillus acidophilus culture for biotechnological production of lactic acid. In Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, vol. 67, no. 6, pp. 1433–1440. DOI: https://doi.org/10.11118/actaun201967061433 Search in Google Scholar

DARWIN – TRIOVANTA, U. – RINALDI, R. 2019c. Two-stage anaerobic co-digestion of landfill leachate and starch wastes using anaerobic biofilm reactor for methane production. In Progress in Agricultural Engineering Sciences, vol. 15, no. 1, 53–70. DOI: https://doi.org/10.1556/446.15.2019.1.4 Search in Google Scholar

DARWIN – ILHAM, M. – FAZIL, A. 2018a. Performance and kinetic study of the anaerobic co-digestion of cocoa husk and digested cow manure with high organic loading rate. In INMATEH-Agricultural Engineering, vol. 55, no. 2, pp. 131–140. Search in Google Scholar

DARWIN – CORD-RUWISCH, R. – CHARLES, W. 2018b. Ethanol and lactic acid production from sugar and starch wastes by anaerobic acidification. In Engineering in Life Sciences, vol. 18, no. 9, pp. 635–642. DOI: https://doi.org/10.1002/elsc.201700178 Search in Google Scholar

DARWIN. 2019d. Rapid determination of lactic acid in anaerobic biological treatment process using a portable sensitive lactate biosensor. In BioTechnologia, vol. 100, no. 2, pp. 115–120. DOI: https://doi.org/10.5114/bta.2019.85320 Search in Google Scholar

DARWIN – PRATAMA, A. – MARDHOTILLAH. 2021. Organic waste conversion via continuous anaerobic co-digestion of oil palm empty fruit bunches and cow manure: Evaluation of feeding regime on methane production. In Acta Technologica Agriculturae, vol. 24, no. 1, pp. 8–13. DOI: https://doi.org/10.2478/ata-2021-0002 Search in Google Scholar

DARWIN – HUMAIRA, T. – MULIAWATI, A. 2022. Identification and characterization of acidosis on in vitro rumen fermentation with feeds based on grass, rice bran, concentrate, and tofu pulp. In Journal of Applied Biology & Biotechnology, vol. 10, pp. 53–58. DOI: https://doi.org/10.7324/JABB.2022.10s108 Search in Google Scholar

FENG, S. – NGO, H. H. – GUO, W. – CHANG, S. W. – NGUYEN, D. D. – LIU, Y. ZHANG, S. – PHONG VO, H. N. – BUI, X. T. – HOANG, B. N. 2022. Volatile fatty acids production from waste streams by anaerobic digestion: A critical review of the roles and application of enzymes. In Bioresource Technology, vol. 359, article no. 127420. DOI: https://doi.org/10.1016/j.biortech.2022.127420 Search in Google Scholar

GALLERT, C. – WINTER, J. 1997. Mesophilic and thermophilic anaerobic digestion of source-sorted organic wastes: Effect of ammonia on glucose degradation and methane production. In Applied Microbiology and Biotechnology, vol. 48, no. 3, pp. 405–410. DOI: https://doi.org/10.1007/s002530051071 Search in Google Scholar

GAMEIRO, T. – LOPES, M. – MARINHO, R. – VERGINE, P. – NADAIS, H. – CAPELA, I. 2016. Hydrolytic-acidogenic fermentation of organic solid waste for volatile fatty acids production at different solids concentrations and alkalinity addition. In Water, Air, & Soil Pollution, vol. 227, article no. 391. DOI: https://doi.org/10.1007/s11270-016-3086-6 Search in Google Scholar

GARCIA-AGUIRRE, J. – AYMERICH, E. – GONZÁLEZ-MTNEZ. DE GOÑI, J. – ESTEBAN-GUTIÉRREZ, M. 2017. Selective VFA production potential from organic waste streams: Assessing temperature and pH influence. In Bioresource Technology, vol. 244, part 1, pp. 1081–1088. DOI: https://doi.org/10.1016/j.biortech.2017.07.187 Search in Google Scholar

GONTUPIL, J. – DARWIN, M. – LIU, Z. – CHENG, J. J. – CHEN, H. 2012. Anaerobic co-digestion of swine manure and corn stover for biogas production. In Annual International Meeting Conference. Dallas, Texas: American Society of Agricultural and Biological Engineers. DOI: https://doi.org/10.13031/2013.41776 Search in Google Scholar

HARIRCHI, S. – WAINAINA, S. – SAR, T. – NOJOUMI, S. A. – PARCHAMI, M. – PARCHAMI, M. – VARJANI, S. – KHANAL, S. K. – WONG, J. – AWASTHI, M. K. – TAHERZADEH, M. J. 2022. Microbiological insights into anaerobic digestion for biogas, hydrogen or volatile fatty acids (VFAs): A review. In Bioengineered, vol. 13, no. 3, pp. 6521–6557. DOI: https://doi.org/10.1080/21655979.2022.2035986 Search in Google Scholar

HERBERT, D. – PHIPPS, P. J. – STRANGE, R. E. 1971. Chapter III Chemical analysis of microbial cells. In Methods in Microbiology, vol. 5, part B, pp. 209–344. DOI: https://doi.org/10.1016/S0580-9517(08)70641-X Search in Google Scholar

JANESCH, E. – PEREIRA, J. – NEUBAUER, P. – JUNNE, S. 2021. Phase separation in anaerobic digestion: A potential for easier process combination? In Frontiers in Chemical Engineering, vol. 3, pp. 1–16. DOI: https://doi.org/10.3389/fceng.2021.711971 Search in Google Scholar

JIANG, J. – ZHANG, Y. – LI, K. – WANG, Q. – GONG, C. – LI, M. 2013. Volatile fatty acid production from food waste: Effects of pH, temperature, and organic loading rate. In Bioresource Technology, vol. 143, pp. 525–530. DOI: https://doi.org/10.1016/j.biortech.2013.06.025 Search in Google Scholar

KLEEREBEZEM, R. – JOOSSE, B. – ROZENDAL, R. – VAN LOOSDRECHT, M. C. M. 2015. Anaerobic digestion without biogas? In Reviews in Environmental Science and Bio/Technology, vol. 14, pp. 787–801. DOI: https://doi.org/10.1007/s11157-015-9374-6 Search in Google Scholar

LI, C. – WANG, Y. – SHA, S. – YIN, H. – ZHANG, H. – WANG, Y. – ZHAO, B. – SONG, F. 2019. Analysis of the tendency for the electronic conductivity to change during alcoholic fermentation. In Scientific Reports, vol. 9, article no. 5512. DOI: https://doi.org/10.1038/s41598-019-41225-x Search in Google Scholar

LUO, K. – PANG, Y. – YANG, Q. – WANG, D. – LI, X. – LEI, M. – HUANG, Q. 2019. A critical review of volatile fatty acids produced from waste activated sludge: Enhanced strategies and its applications. In Environmental Science and Pollution Research, vol. 26, pp.13984–13998. DOI: https://doi.org/10.1007/s11356-019-04798-8 Search in Google Scholar

MEYER-DOMBARD, D. R. – BOGNER, J. E. – MALAS, J. 2020. A review of landfill microbiology and ecology: A call for modernization with ‘next generation’ technology. In Frontiers in Microbiology, vol. 11, 1–22. DOI: https://doi.org/10.3389/fmicb.2020.01127 Search in Google Scholar

MUNIR, E. – LUTFIA, A. – HARTANTO, A. – FAZRI, A. A. N. – HERDIYANTI, C. – PRATAMA, R. – SINAGA, O. B. I. – RAMADANI, Z. A. – HASANAH, P. 2022. Potential of landfill microbes in hydrocarbon degradation. In IOP Conference Series: Earth and Environmental Science, vol. 977, article no. 012095. DOI: https://doi.org/10.1088/1755-1315/977/1/012095 Search in Google Scholar

PALAKAWONG NA AYUDTHAYA, S. – VAN DE WEIJER, A. H. P. – VAN GELDER, A. H. – STAMS, A. J. M. – DE VOS, W. M. – PLUGGE, C. M. 2018. Organic acid production from potato starch waste fermentation by rumen microbial communities from Dutch and Thai dairy cows. In Biotechnology for Biofuels, vol. 11, article no. 13. DOI: https://doi.org/10.1186/s13068-018-1012-4 Search in Google Scholar

PATEL, A. – MAHBOUBI, A. – HORVÁTH, I. S. – TAHERZADEH, M. J. – ROVA, U. – CHRISTAKOPOULOS, P. – MATSAKAS, L. 2021. Volatile fatty acids (VFAs) generated by anaerobic digestion serve as feedstock for freshwater and marine oleaginous microorganisms to produce biodiesel and added-value compounds. In Frontiers in Microbiology, vol. 12, article no. 612614. DOI: https://doi.org/10.3389/fmicb.2021.614612 Search in Google Scholar

PHAM, V. H. T. – AHN, J. – KIM, J. – LEE, S. – LEE, I. – KIM, S. – CHANG, S. – CHUNG, W. 2021. Volatile fatty acid production from food waste leachate using enriched bacterial culture and soil bacteria as co-digester. In Sustainability (Switzerland), vol. 13, no. 17, article no. 9606. DOI: https://doi.org/10.3390/su13179606 Search in Google Scholar

RAMOS-SUAREZ, M. – ZHANG, Y. – OUTRAM, V. 2021. Current perspectives on acidogenic fermentation to produce volatile fatty acids from waste. In Reviews in Environmental Science and Bio/ Technology, vol. 20, pp. 439–478. DOI: https://doi.org/10.1007/s11157-021-09566-0 Search in Google Scholar

RASI, S. – VAINIO, M. – BLASCO, L. – KAHALA, M. – LESKINEN, H. – TAMPIO, E. 2022. Changes in volatile fatty acid production and microbiome during fermentation of food waste from hospitality sector. In Journal of Environmental Management, vol. 308, article no. 114640. DOI: https://doi.org/10.1016/j.jenvman.2022.114640 Search in Google Scholar

ROBERGS, R. A. – MCNULTY, C. R. – MINETT, G. M. – HOLLAND, J. – TRAJANO, G. 2018. Lactate, not Lactic Acid, is Produced by Cellular Cytosolic Energy Catabolism. In Physiology, vol. 33, no. 1, pp. 10–12. DOI: https://doi.org/10.1152/physiol.00033.2017 Search in Google Scholar

SHARMA, B. – VAISH, B. – MONIKA – SINGH, U. K. – SINGH, P. – SINGH, R. P. 2019. Recycling of organic wastes in agriculture: An environmental perspective. In International Journal of Environmental Research, vol. 13, pp. 409–429. DOI: https://doi.org/10.1007/s41742-019-00175-y Search in Google Scholar

SINGH, R. – DAS, R. – SANGWAN, S. – ROHATGI, B. – KHANAM, R. – PEERA, S. K. P. G. – DAS, S. – LYNGDOH, Y. A. – LANGYAN, S. – SHUKLA, A. – SHRIVASTAVA, M. – MISRA, S. 2021. Utilisation of agro-industrial waste for sustainable green production: A review. In Environmental Sustainability, vol. 4, pp. 619–636. DOI: https://doi.org/10.1007/s42398-021-00200-x Search in Google Scholar

SUN, J. – ZHANG, L. – LOH, K. C. 2021. Review and perspectives of enhanced volatile fatty acids production from acidogenic fermentation of lignocellulosic biomass wastes. In Bioresources and Bioprocessing, vol. 8, article no. 68. DOI: https://doi.org/10.1186/s40643-021-00420-3 Search in Google Scholar

TANG, J. – WANG, X. C. – HU, Y. – ZHANG, Y. – LI, Y. 2017. Effect of pH on lactic acid production from acidogenic fermentation of food waste with different types of inocula. In Bioresource Technology, vol. 224, pp. 544–552. DOI: https://doi.org/10.1016/j.biortech.2016.11.111 Search in Google Scholar

TANG, J. – WANG, X. – HU, Y. – ZHANG, Y. – LI, Y. 2016. Lactic acid fermentation from food waste with indigenous microbiota: Effects of pH, temperature and high OLR. In Waste Management, vol. 52, pp. 278–285. DOI: https://doi.org/10.1016/j.wasman.2016.03.034 Search in Google Scholar

UDDIN, M. M. – WRIGHT, M. M. 2022. Anaerobic digestion fundamentals, challenges, and technological advances. In Physical Sciences Reviews, vol. 8, no. 9, pp. 2819–2837. DOI: https://doi.org/10.1515/psr-2021-0068 Search in Google Scholar

UDDIN, M. N. – SIDDIKI, S. Y. A. – MOFIJUR, M. – DJAVANROODI, F. – HAZRAT, M. A. – SHOW, P. L. – AHMED, S. F. – CHU, Y. M. 2021. Prospects of bioenergy production from organic waste using anaerobic digestion technology: A mini review. In Frontiers in Energy Research, vol. 9, article no. 627093. DOI: https://doi.org/10.3389/fenrg.2021.627093 Search in Google Scholar

VELVIZHI, G. – BALAKUMAR, K. – SHETTI, N. P. – AHMAD, E. – PANT, K. K. – AMINABHAVI, T. M. 2022. Integrated biorefinery processes for conversion of lignocellulosic biomass to value added materials: Paving a path towards circular economy. In Bioresource Technology, vol. 343, article no. 126151. DOI: https://doi.org/10.1016/J.BIORTECH.2021.126151 Search in Google Scholar

VINCI, G. – RUGGIERI, R. – BILLI, A. – PAGNOZZI, C. – DI LORETO, M. V. – RUGGERI, M. 2021. Sustainable management of organic waste and recycling for bioplastics: A LCA approach for the Italian case study. In Sustainability (Switzerland), vol. 13, no. 11, article no. 6385. DOI: https://doi.org/10.3390/su13116385 Search in Google Scholar

WAINAINA, S. – LUKITAWESA – KUMAR AWASTHI, M. – TAHERZADEH, M. J. 2019. Bioengineering of anaerobic digestion for volatile fatty acids, hydrogen or methane production: A critical review. In Bioengineered, vol. 10, no. 1, pp. 437–458. DOI: https://doi.org/10.1080/21655979.2019.1673937 Search in Google Scholar

YE, M. – LIU, J. – MA, C. – LI, Y. Y. – ZOU, L. – QIAN, G. – XU, Z. P. 2018. Improving the stability and efficiency of anaerobic digestion of food waste using additives: A critical review. In Journal of Cleaner Production, vol. 192, pp. 316–326. DOI: https://doi.org/10.1016/j.jclepro.2018.04.244 Search in Google Scholar

YIN, D. M. – MAHBOUBI, A. – WAINAINA, S. – QIAO, W. – TAHERZADEH, M. J. 2021. The effect of mono- and multiple fermentation parameters on volatile fatty acids (VFAs) production from chicken manure via anaerobic digestion. In Bioresource Technology, vol. 330, article no. 124992. DOI: https://doi.org/10.1016/j.biortech.2021.124992 Search in Google Scholar

eISSN:
1338-5267
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Engineering, Introductions and Overviews, other