Accesso libero

Seasonal Occurrence of Ibuprofen in Sediment, Water, and Biota in River Owena and Ogbese, and its Ecological Risk Assessment

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Abrahm, P. and KI, K. D. (2005). Nitro-argenine methyl ester, a nonselective inhibitor of nitric oxide synthase reduces IBU-induced gastric mucosal injury in the rat, Digestive Diseases, 50 (9); 1632-1640.10.1007/s10620-005-2908-y16133962Search in Google Scholar

Akbar, E., Mostafa, M., Amini, A. R. Y., Noushin, R., A., Anoushiravan, M., Simin, N., Ehsan, P. and Anvar, A. (2015). Occurrence of non-steroidal anti-inflammatory drugs in Tehran source water, municipal and hospital wastewaters, and their ecotoxicological risk assessment, Environmental Monitoring Assessment, 187;734.10.1007/s10661-015-4952-126553436Search in Google Scholar

Alessandra, G., Fulvia, C., Simona, B., Lucia, M. R., Roberta, C. and Alessandro, V. (2012). Development and validation of two multiresidue liquid chromatography tandem mass spectrometry methods based on a versatile extraction procedure for isolating nonsteroidal anti-inflammatory drugs from bovine milk and muscle tissue, Analytical and Bioanalytical Chemistry, 404; 1375–1388.10.1007/s00216-012-6231-022777033Search in Google Scholar

Ali, I., Singh, P., Aboul-Enein, H. Y. and Sharma, B. (2009). Chiral analysis of ibuprofen residues in water and sediment, Analytical Letters, 42 (12); 1747–1760.10.1080/00032710903060768Search in Google Scholar

Anekwe, J. E., Mohamed, Abou-Elwafa, A. and Stuart, H. (2017). Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment, Emerging Contaminants, 3; 1-16.10.1016/j.emcon.2016.12.004Search in Google Scholar

Araujo, L., Troconis, M.E., Espina, M.B. and Prieto, A. (2014). Persistence of IBU, Ketoprofen, Diclofenac and Clofibric Acid in Natural Waters, Journal of Environment and Human, 1 (2); 32-3810.15764/EH.2014.02005Search in Google Scholar

Arnot, J.A. and Gobas, F.A. (2006). A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms, Environmental Review, 14; 257–297.10.1139/a06-005Search in Google Scholar

Camacho-Muñoz, D., Martín, J., Santos, J. L., Aparicio, I. and Alonso, E. (2010). Occurrence, temporal evolution and risk assessment of pharmaceutically active compounds in Doñana Park (Spain), Journal of Hazardous Materials, 183(1–3); 602–608.10.1016/j.jhazmat.2010.07.06720702036Search in Google Scholar

De Souza, S.M.L., Vasconcelos, E.C., Dziedzic, M. and de Oliveira, C.M.R. (2009). Environmental risk assessment of antibiotics: an intensive care unit analysis, Chemosphere, 77; 962–967.10.1016/j.chemosphere.2009.08.01019744697Search in Google Scholar

Fasina, A.S., Raji, A., Oluwatosin, G.A., Omoju, O.J. and Oluwadare, D.A. (2015). Properties, Genesis, Classification, Capability and Sustainable Management of Soils from South-Western Nigeria, International Journal of Soil Science, 10; 142-152.10.3923/ijss.2015.142.152Search in Google Scholar

Ferhan, Ç. and Ulaş, T. (2017). Hazardous Pollutants in Biological Treatment Systems, in: Fundamentals and a Guide to Experimental Research, IWA Publishing, Pp 81 – 85.Search in Google Scholar

Gunnarsson, L, Jauhiainen, A., Kristiansson, E., Nerman, O. and Larsson, D. G. (2008). Evolutionary conservation of human drug targets in organisms used for environmental risk assessments. Environmental Science & Technology.2 (15):5807-1310.1021/es8005173Search in Google Scholar

Gunnarsson, L., Jason, R. S., Bas, V., Stewart, F. O., Erik, K., Luigi, M., Tobias, Ö., Kathryn, H., Dean, L., Becky, M. and Charles, R. T. (2019). Pharmacology beyond the patient – The environmental risks of human drugs. Environment International, 129; 320–332.10.1016/j.envint.2019.04.075Search in Google Scholar

Halimeh, A. S. S. (2012). Fate of Amoxicillin, IBU, and Caffeine in Soil and Ground Water Using Soil Columns (Doctoral dissertation, An- Najah National University, Nablus, West Bank, Palestinian Territories), Retrieved from https://www.researchgate.net/publication/273562880Search in Google Scholar

Han, S., Choi, K., Kim, J., Ji, K., Kim, S., Ahn, B., Yun, J., Choi, K., Khim, J. S., Zhang, X. and Giesy, J. P. (2010). Endocrine disruption and consequences of chronic exposure to ibuprofen in Japanese medaka (Oryzias latipes) and freshwater cladocerans Daphnia magna and Moina macrocopa, Aquatic Toxicology, 98; 256-264.10.1016/j.aquatox.2010.02.013Search in Google Scholar

Huerta, B., Jakimska, A., Gros, M., Rodríguez-Mozaz, S. and Barceló D. (2013). Analysis of multi-class pharmaceuticals in fish tissues by ultra-high-performance liquid chromatography-tandem mass spectrometry. Journal of Chromatography A, 1288; 63-72.10.1016/j.chroma.2013.03.001Search in Google Scholar

Joanna, Ż., Artur, P., Ariel, M., Katarzyna, H., Danuta, W. and Urszula, G. (2018). Organic micropollutants paracetamol and ibuprofen—toxicity, biodegradation, and genetic background of their utilization by bacteria, Environmental Science and Pollution Research, 25; 21498.10.1007/s11356-018-2517-xSearch in Google Scholar

Jones, O. A. H., Voulvoulis, N. and Lester, J. N. (2002). Aquatic environmental assessment of the top 25 English prescription pharmaceuticals. Water Research, 36 (20), 5013–5022.10.1016/S0043-1354(02)00227-0Search in Google Scholar

Klimaszyk, P. and Rzymski, P. (2018) Water and Aquatic Fauna on Drugs: What are the Impacts of Pharmaceutical Pollution? In: Zelenakova M. (eds) Water Management and the Environment: Case Studies. WINEC 2017. Water Science and Technology Library, vol 86. Springer, Cham10.1007/978-3-319-79014-5_12Search in Google Scholar

K’oreje, K.O., Kristof, D., Patrick, D.W., Leendert, V., J. D. and Herman, V.L. (2012). From multi-residue screening to target analysis of pharmaceuticals in water: Development of a new approach based on magnetic sector mass spectrometry and application in the Nairobi River basin, Kenya, Science of The Total Environment, 437; 153–16410.1016/j.scitotenv.2012.07.05222935682Search in Google Scholar

Kümmerer, K. (2010). Pharmaceuticals in the environment, Annual Review of Environment and Resources, 35; 57–75.10.1146/annurev-environ-052809-161223Search in Google Scholar

Lagesson, A., Fahlman, J., Brodina, T., Fick, J., Jonsson, M., Byström, P. and Klaminder, J. (2016). Bioaccumulation of five pharmaceuticals at multiple trophic levels in an aquatic food web - Insights from a field experiment. Science of the Total Environment, 568; 208–215.10.1016/j.scitotenv.2016.05.20627295593Search in Google Scholar

Lahti, M., Brozinski, J. M., Jylhä, A. and Oikari, A. (2011). Uptake from water, biotransformation, and biliary excretion of pharmaceuticals by rainbow trout, Environmental Toxicology and Chemistry, 30;1403–1411.10.1002/etc.50121337612Search in Google Scholar

Lawrence, M. M., Nikita, T. T. and Luke, C. (2017). Status of pharmaceuticals in African water bodies: Occurrence, removal and analytical methods, Journal of Environmental Management, 193; 211 – 22010.1016/j.jenvman.2017.02.02228222352Search in Google Scholar

Lishman, L., Smyth, S. A., Sarafin, K., Kleywegt, S., Toito, J., Peart, T., Lee, B., Servos, M., Beland, M. and Seto, P. (2006). Occurrence and reductions of pharmaceuticals and personal care products and estrogens by municipal wastewater treatment plants in Ontario, Canada. Science of the Total Environment, 367; 544-558.10.1016/j.scitotenv.2006.03.02116697441Search in Google Scholar

Liu, Y. Y, Hu, X. L., Bao, Y. F. and Yin, D. Q. (2018). Simultaneous determination of 29 pharmaceuticals in fish muscle and plasma by ultrasonic extraction followed by SPE–UHPLC–MS/MS, Journal of Separation Science, 41: 2139–2150.10.1002/jssc.20170136029431907Search in Google Scholar

Lucia, M. R., Alessandra, G., Fulvia, C., Roberta, C. and Virginia, P. (2015). Occurrence of non-steroidal anti-inflammatory drugs in surface waters of Central Italy by liquid chromatography–tandem mass spectrometry, International Journal of Environmental Analytical Chemistry, Pages; 685-69710.1080/03067319.2015.1046059Search in Google Scholar

Madikizela, L. M. and Chimuka, L. (2016a). Determination of IBU, naproxen and diclofenac in aqueous samples using a multi-template molecularly imprinted polymer as selective adsorbent for solid-phase extraction, Journal of Pharmaceutical and Biomedical Analysis, 128; 210-215.10.1016/j.jpba.2016.05.03727268945Search in Google Scholar

Malferrari, D., Brigatti, M.F., Laurora, A. and Pini, S. (2009). Heavy metals in sediments from canals for water supplying and drainage: mobilization and control strategies, Journal of Hazardous Materials, 161; 723-729.10.1016/j.jhazmat.2008.04.01418486335Search in Google Scholar

Michael, C. (2004). Mixture toxicity of the anti-inflammatory drugs diclofenac, IBU, naproxen, and acetylsalicylic acid. Ecotoxicology and Environmental Safety, 59; 309–315.10.1016/S0147-6513(03)00141-6Search in Google Scholar

Modi, C. M., Mody, S. K., Patel, H. B., Dudhatra, G.B., Avinash, K. and Madhavi, A. (2012). Toxicopathological overview of analgesic and antiinflammatory drugs in animals, Journal of Applied Pharmaceutical Science, 02 (01); 149-157.Search in Google Scholar

Mompelat, S., Le Bot, B. and Thomas, O. (2009). Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water, Environment International, 35; 803-814.10.1016/j.envint.2008.10.00819101037Search in Google Scholar

Monika, D. J., (2015). Biomonitoring of Wild Fish to Assess Chemical Pollution in English Rivers – An Application of a Fish Tissue Archive (Doctoral dissertation, Lancaster University, Lancaster, United Kingdom). Retrieved from https://pdfs.semanticscholar.org/ac60/Search in Google Scholar

Nesbitt, R. (2011). Effects of Chronic Exposure to IBU and Naproxen on Florida Flagfish (Jordanella Floridae) over One Complete Life-cycle. Master’s thesis. University of Ontario Institute of Technology, Oshawa, Canada. https://ir.libraryDcuoit.ca/bitstream/10155/176/1/Nesbitt_Richard.pdf (Accessed 5 January 2016).Search in Google Scholar

Ogueji, E.O., Nwani, C.D., Iheanacho, S.C., Mbah, C.E., Okeke, C.O. and Yaji, A. (2017). Acute toxicity effects of IBU on behavior and haematological parameters of African catfish Clarias gariepinus (Burchell, 1822), African Journal of Aquatic Science, 43:3; 293-303.10.2989/16085914.2018.1465393Search in Google Scholar

Oh, S., Shin, W. S., Kim, H. T. (2016). Effects of pH, dissolved organic matter, and salinity on IBU sorption on sediment, Environmental Science and Pollution Research, 23; 22882–22889.10.1007/s11356-016-7503-6510127327572692Search in Google Scholar

Oluwatosin, O., Adekunle, B., Obih, U. and Arne, H. (2016). Quantification of pharmaceutical residues in wastewater impacted surface waters and sewage sludge from Lagos, Nigeria, Journal of Environmental Chemistry and Ecotoxicology, 8 (3); 14-24.10.5897/JECE2015.0364Search in Google Scholar

Paíga, P., Santos, L. M. L. M., Amorim, C., Araújo, A., Montenegro, M. C. S. M., Pena, A. and Delerue-Matos, C. (2013). Pilot monitoring study of ibuprofen in surface waters of north of Portugal, Environmental Science and Pollution Research, 20(4); 2410–2420.10.1007/s11356-012-1128-122932847Search in Google Scholar

Pranitha, A., and Lakshmi, P.K. (2018). Effect of pH on weakly acidic and basic model drugs and determination of their ex vivo transdermal permeation routes. Brazilian Journal of Pharmaceutical Science, 54 (2); 00070.10.1590/s2175-97902018000200070Search in Google Scholar

Pravin, K.M., Sanjay, K.G. and Atul, K.M. (2018). Fate of pharmaceutical active compounds (PhACs) from River Yamuna, India: An ecotoxicological risk assessment approach, Ecotoxicology and Environmental Safety, 150; 297–304.10.1016/j.ecoenv.2017.12.04129289865Search in Google Scholar

Samuel, F., Esayas, A., Raf, D. and Bart,V. B. (2018). Pharmaceuticals in freshwater aquatic environments: A comparison of the African and European challenge, Science of the Total Environment, 654; 324–337.10.1016/j.scitotenv.2018.11.07230448654Search in Google Scholar

Sanderson, H., Johnson, D. J., Reitsma, T., Brain, R.A., Wilson, C. J. and Solomon, K. R. (2004). Ranking and prioritization of environmental risks of pharmaceuticals in surface waters, Regulatory Toxicology and Pharmacology, 39; 158–83.10.1016/j.yrtph.2003.12.00615041147Search in Google Scholar

Sándor, Z. J., Papp, Z. G., Kosáros, T. J., Hegedűs, R. and Csengeri, I. (2012). Potencial effects of pharmaceuticals and their residues in aquatic environment, Studia Universitatis “Vasile Goldiş”, Seria Ştiinţele Vieţii, 22 (2); 247-255Search in Google Scholar

Solomon, M., Grace, B., Brenda, M. and Patrick, N. (2015). Occurrence of selected pharmaceuticals in water and sediment of Umgeni River, KwaZulu-Natal, South Africa, Environmental Science and Pollution Research International, 13; 10298-30810.1007/s11356-015-4217-025708853Search in Google Scholar

Sosnowska, K., Styszko-Grochowiak K. and Gołaś, J. (2009). Leki w środowisku – źródła, przemiany, zagro żenia, Krakowska Konferencja Młodych Uczonych,Search in Google Scholar

Stumpf, M., Ternes, T.A., Haberer, K., Seel, P. and Baumann, W. (1996). Nachweis von Arzneimittelru¨cksta¨nden in Kla¨ranlagen und FlieX gewa¨ssern, Vom Wasser 86; 291–303.Search in Google Scholar

Thomas, H. M., Nicolas R. B., Stewart, F. O., James, I. M. and Leon, P. B. (2018). A review of the pharmaceutical exposome in aquatic fauna. Environmental Pollution, 239; 129-14610.1016/j.envpol.2018.04.012598100029653304Search in Google Scholar

US Environmental Protection Agency. (2011). Method 1694: Pharmaceuticals and Personal Care Products in Water, Soil, Sediment, and Biosolids by HPLC/MS/MS. Pg. 1-77. December 2007.Search in Google Scholar

William, J.D. and Randy, S. (1997). Groundwater Geochemistry: Fundamentals and Applications to Contamination. CRC Press. SBN 9780873713085 - CAT# L308Search in Google Scholar

Wong, C.K., Wong, P.P.K. and Chu, L.M. (2001). Heavy metal concentrations in marine fishes collected from fish culture sites in Hong Kong, Archives of Environmental Contamination and Toxicology, 40; 60-69.10.1007/s00244001014811116341Search in Google Scholar

eISSN:
2544-6320
Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Chemistry, Biochemistry, Environmental Chemistry, Industrial Chemistry