Accesso libero

Short peptide analogs of LfcinB synthesized by Solid Phase Peptide Synthesis as an alternative to global microbial resistance

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Stamov, P.; Stamova, S., The use of postoperative antibiotics after appendectomy. 3rd International African Conference on Current Studies, Conference paper, 2021, 474-477. Search in Google Scholar

2. Proevska, Yu.; Velinov, Tsv., Microbial resistance - a global threat, Microbiological resistance and antibiotics, 2016, 4 (37). Search in Google Scholar

3. Kamaruzzaman, N.F.; Tan, L.P.; Hamdan, R.H.; Choong, S.S.; Wong, W.K.; Gibson, A.J.; Chivu, A.; Pina, M.F., Antimicrobial Polymers: The Potential Replacement of Existing Antibiotics?, International Journal of Molecular Sciences, 2019, 20(11), 2747.10.3390/ijms20112747 Search in Google Scholar

4. A Scientific Roadmap for Antibiotic Discovery, A report from the PEW charitable trusts 2016, https://www.pewtrusts.org/~/media/assets/2016/05/ascientificroadmapforantibioticdiscovery.pdf Search in Google Scholar

5. Hancock, R.; Chapple, D., Peptide Antibiotics, Antimicrobial Agents and Chemotherapy, 1999, 43, 1317-1323, DOI: https://doi.org/10.1128/AAC.43.6.1317. Search in Google Scholar

6. Mihaylova, S.; Tsvetkova, A.; Arnaoudova, M.; Todorova, A.; Petkova, V.; Dimitrov, M.; Manova, M.; Savova, A., Current issues regarding approved peptide and protein drugs in Bulgaria, World Journal of Pharmacy and Pharmaceutical Sciences, 2018, 7(4), 708-717. Search in Google Scholar

7. Sung, Yu. H.; Tae, G.P.; Keun-Hyeung, L., The effect of charge increase on the specificity and activity of a short antimicrobial peptide, Peptides, 2001, 22(10), 1669-1674, DOI: https://doi.org/10.1016/S0196-9781(01)00502-2. Search in Google Scholar

8. Moretta, A.; Scieuzo, C.; Petrone, A.M.; Salvia, R.; Manniello, M.D.; Franco, A.; Lucchetti, D.; Vassallo, A.; Vogel, H.; Sgambato, A. and Falabella, P., Antimicrobial Peptides: A New Hope in Biomedical and Pharmaceutical Fields, Frontiers in Cellular and Infection Microbiology, 2021, 11, 1-26, DOI: https://doi.org/10.3389/fcimb.2021.668632.823804634195099 Search in Google Scholar

9. Ivanova, S.; Mihaylova, S.; Tsvetkova, A., Methods to enhance the metabolic stability of peptide drugs, Varna Medical Forum, 2021, Vol. 10, Suppl. 1, 371-379, DOI: https://doi.org/10.14748/vmf.v10i2.7935. Search in Google Scholar

10. Dzimbova, T.; Iliev, I.; Georgiev, K.; Detcheva, R.; Balacheva, A.; Pajpanova, T., In Vitro Assessment of the Cytotoxic Effects of Sulfo-Arginine Analogues and their Hydrazide Derivatives in 3T3 and HepG2 Cells, Biotechnology and Biotechnological Equipment, 2014, 26, 180-184, DOI: https://doi.org/10.5504/50YRTIMB.2011.0033. Search in Google Scholar

11. Aleksiev, B.; Stoev, S., Substitution of sulfur-containing amino carbonic acids, peptides and protein corpuscles with chlorine. 6. Synthesis of substituted 2-amino-2-carboxyethanolsulfonamides, Pharmacy, 1971, 26(8), 469-473. Search in Google Scholar

12. Mihaylova, S., Solid-phase peptide synthesis (SPPS), Varna Medical Forum, 2017, Vol. 6, Suppl. 2, 415-421. Search in Google Scholar

13. Barany, G.; Merrifield, R.B., A new amino protecting group removable by reduction. Chemistry of the dithiasuccinoyl (Dts) function, Journal of the American Chemical Society, 1977, 99(22), 7363–5.10.1021/ja00464a050 Search in Google Scholar

14. Barany, G.; Albericio, F., Three-dimensional orthogonal protection scheme for solid-phase peptide synthesis under mild conditions, Journal of the American Chemical Society, 1985, 107(17), 4936–42.10.1021/ja00303a019 Search in Google Scholar

15. Hancock, R.; Chapple, D., Peptide Antibiotics, Antimicrobial Agents and Chemotherapy, 1999, 43, 1317-1323.10.1128/AAC.43.6.1317 Search in Google Scholar

16. Swartz, M.N., Hospital-acquired infections: diseases with increasingly limited therapies, Proceedings of the National Academy of Sciences, 1994, 91, 2420-2427.10.1073/pnas.91.7.2420 Search in Google Scholar

17. Nikaido, H., Woshington, D.C., Prevention of drug access to bacterial targets: permeability barriers and active efflux, Science, 1994, 264, 382-388.10.1126/science.8153625 Search in Google Scholar

18. Davies, J., Inactivation of antibiotics and the dissemination of resistance genes, Science, 1994, 264, 375-381.10.1126/science.8153624 Search in Google Scholar

19. Vorland, L.H.; Ulvatne, H.; Andersen, J.; Haukland, H.H., Rekdal, Ø.; Svendsen, J. S.; Gutteberg, T.J., Lactoferricin of Bovine Origin is More Active than Lactoferricins of Human, Murine and Caprine Origin, Scandinavian Journal of Infectious Diseases, 1998, 30(5), 513-517, DOI: https://doi.org/10.1080/00365549850161557.10066056 Search in Google Scholar

20. Huertas Méndez, N.J.; Vargas Casanova, Y.; Gómez Chimbi, A.K.; Hernández, E.; Leal Castro, A.L.; Melo Diaz, J.M.; Rivera Monroy, Z.J.; García Castañeda, J.E., Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Antimicrobial Activity against E. coli ATCC 11775, S. maltophilia ATCC 13636 and S. enteritidis ATCC 13076, Molecules, 2017, 22(3), 452.10.3390/molecules22030452 Search in Google Scholar

21. Kang, J.H.; Lee, M.K.; Kim, K.L.; Hahm, K.S., Structure – biological activity relationships of 11-residue highly basic peptide segment of bovine lactoferrin, International Journal of Peptide and Protein Research, 1996, 48(4), 357-363. DOI: https://doi.org/10.1111/j.1399-3011.1996.tb00852.x8919056 Search in Google Scholar

22. Jérémie, T.; Ismail, F.; Julie, J.; Riadh, H., MilkAMP: a comprehensive database of antimicrobial peptides of dairy origin, Dairy Science & Technology, 2014, 94, 181-193, DOI: https://doi.org/10.1007/s13594-013-0153-2. Search in Google Scholar

eISSN:
2603-347X
Lingua:
Inglese
Frequenza di pubblicazione:
Volume Open
Argomenti della rivista:
Chemistry, other, Geosciences, Geography, Life Sciences, Physics