Accesso libero

Nanostructured surface dental implants, a modern solution for the treatment of patients with chronic systemic diseases.

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Hickin MP, Shariff JA, Jennette PJ, Finkelstein J, Papapanou PN. Incidence and Determinants of Dental Implant Failure: A Review of Electronic Health Records in a U.S. Dental School. J Dent Educ. 2017;81:1233–42.10.21815/JDE.017.08028966189 Search in Google Scholar

2. Derks J, Tomasi C. Peri-implant health and disease: a systematic review of current epidemiology. J Clin Periodontol. 2015;42:S158–71.10.1111/jcpe.1233425495683 Search in Google Scholar

3. Insua A, Monje A, Wang HL, Miron RJ. Basis of bone metabolism around dental implants during osseointegration and peri-implant bone loss. J Biomed Mater Res A. 2017;105(7):2075-2089.10.1002/jbm.a.3606028281321 Search in Google Scholar

4. World Health Organization. World report on ageing and health. Geneva, Switzerland: WHO Press; 2015. Search in Google Scholar

5. Castellanos-Cosano L, Rodriguez-Perez A, Spinato S, et al. Descriptive retrospective study analyzing relevant factors related to dental implant failure. Med. Oral Patol. Oral Cir. Bucal. 2019;24:e726– e738.10.4317/medoral.23082690113931655831 Search in Google Scholar

6. Horikawa T, Odatsu T, Itoh T, et al. Retrospective cohort study of rough-surface titanium implants with at least 25 years’ function. Int. J. Implant Dent. 2017;3:42.10.1186/s40729-017-0101-7558511728875460 Search in Google Scholar

7. Jokstad A, Braegger U, Brunski JB, Carr AB, Naert I, Wennerberg A. Quality of dental implants. Int Dent J. 2003;53(6 Suppl 2):409-43.10.1111/j.1875-595X.2003.tb00918.x Search in Google Scholar

8. Romanos G, Ciornei G, Jucan A, Malmstrom H, Gupta B. Clinical Implant Dentistry and Related Research. 2014;16(1):89-95. Search in Google Scholar

9. Staedt H, Palarie V, Staedt A, et al. Primary Stability of Cylindrical and Conical Dental Implants in Relation to Insertion Torque-A Comparative Ex Vivo Evaluation. Implant Dent. 2017;26(2):250-255.10.1097/ID.000000000000053127922455 Search in Google Scholar

10. Chandar S, Kotian R, Madhyastha P, Kabekkodu SP, Rao P. In vitro evaluation of cytotoxicity and corrosion behavior of commercially pure titanium and Ti-6Al-4V alloy for dental implants. J Indian Prosthodont Soc. 2017;17(1):35-40. Search in Google Scholar

11. Willis J, Li S, Crean SJ, Barrak FN. Is titanium alloy Ti-6Al-4 V cytotoxic to gingival fibroblasts-A systematic review. Clin Exp Dent Res. 2021;1-8.10.1002/cre2.444863828834018703 Search in Google Scholar

12. Budei D, Vaireanu D, Prepelita P, Popescu-Pelin G, Mincu M, Ciobotaru I. A comparative morphological study of titanium dioxide surface layer dental implants. Open Chemistry.2021;19(1):189-198.10.1515/chem-2021-0197 Search in Google Scholar

13. Lee JK, Choi DS, Jang I, Choi WY. Improved osseointegration of dental titanium implants by TiO2 nanotube arrays with recombinant human bone morphogenetic protein-2: a pilot in vivo study. Int J Nanomedicine.2015;10:1145-1154. Search in Google Scholar

14. Yeo IL. Modifications of Dental Implant Surfaces at the Micro- and Nano-Level for Enhanced Osseointegration.Materials(Basel).2019;13(1):89.10.3390/ma13010089698201731878016 Search in Google Scholar

15. Zhang Y, Hu L, Lin M, Cao S, Feng Y, Sun S. RhBMP-2-Loaded PLGA/Titanium Nanotube Delivery System Synergistically Enhances Osseointegration. ACS Omega.2021;6(25):16364-16372.10.1021/acsomega.1c00851824647234235307 Search in Google Scholar

16. Yang J, Zhang H, Chan SM, et al. TiO2 Nanotubes Alleviate Diabetes-Induced Osteogenetic Inhibition. Int J Nanomedicine.2020;15:3523-3537.10.2147/IJN.S237008724444732547011 Search in Google Scholar

17. Pathak TK, Kroon RE, Craciun V, Popa M, Chifiriuc MC, Swart HC. Influence of Ag, Au and Pd noble metals doping on structural, optical and antimicrobial properties of zinc oxide and titanium dioxide nanomaterials. Heliyon.2019;5(3):e01333.10.1016/j.heliyon.2019.e01333642401630923765 Search in Google Scholar

18. Camargo SEA, Xia X, Fares C, et al. Nanostructured Surfaces to Promote Osteoblast Proliferation and Minimize Bacterial Adhesion on Titanium. Materials(Basel). 2021;14:4357.10.3390/ma14164357839830034442878 Search in Google Scholar

19. Aw MS, Addai-Mensah J, Losic D. A multi-drug delivery system with sequential release using titania nanotube arrays. Chem. Commun. 2012;48:3348–3350. Search in Google Scholar

20. Kunrath MF, Penha N, Ng JC. Anodization as a promising surface treatment for drug delivery implants and a non-cytotoxic process for surface alteration: a pilot study. J Osseointegr. 2020;12(1):XXXX. Search in Google Scholar

21. Politis C, Schoenaers J, Jacobs R, Agbaje JO. Wound Healing Problems in the Mouth. Front Physiol. 2016;7:507.10.3389/fphys.2016.00507508998627853435 Search in Google Scholar

22. Abreu AM, Douglas de Oliveira DW, Marinho SA, Lima NL, de Miranda JL, Verli FD. Effect of topical application of different substances on fibroplasia in cutaneous surgical wounds. ISRN Dermatol. 2012;2012:282973.10.5402/2012/282973332144022536526 Search in Google Scholar

23. Sambrook PN. Glucocorticoid-induced osteoporosis. International Journal of Rheumatic Diseases. 2008;11(4):381–385.10.1111/j.1756-185X.2008.00391.x Search in Google Scholar

24. Cheng SL, Yang JW, Rifas L, Zhang SF, Avioli LV. Differentiation of human bone marrow osteogenic stromal cells in vitro: induction of the osteoblast phenotype by dexamethasone. Endocrinology. 1994;134(1):277–286.10.1210/endo.134.1.82759458275945 Search in Google Scholar

25. Eijken M, Koedam M, van Driel M, Buurman CJ, Pols HAP, van Leeuwen JPTM. The essential role of glucocorticoids for proper human osteoblast differentiation and matrix mineralization. Molecular and Cellular Endocrinology. 2006;248(1-2):87–93.10.1016/j.mce.2005.11.03416406260 Search in Google Scholar

26. Igarashi M, Kamiya N, Hasegawa M, Kasuya T, Takahashi T, Takagi M. Inductive effects of dexamethasone on the gene expression of Cbfa1, Osterix and bone matrix proteins during differentiation of cultured primary rat osteoblasts. Journal of Molecular Histology. 2004;35(1):3–10.10.1023/B:HIJO.0000020883.33256.fe Search in Google Scholar

27. Wang H, Pang B, Li Y, Zhu D, Pang T, Liu Y. Dexamethasone has variable effects on mesenchymal stromal cells. Cytotherapy. 2012;14(4):423–430.10.3109/14653249.2011.65273522364108 Search in Google Scholar

28. Zhao M, Li P, Xu H, et al. Dexamethasone-Activated MSCs Release MVs for Stimulating Osteogenic Response. Stem Cells Int. 2018;2018:7231739.10.1155/2018/7231739592652429760734 Search in Google Scholar

29. Yang Y, Hu H, Zeng M, et al. The survival rates and risk factors of implants in the early stage: a retrospective study. BMC Oral Health. 2021;21(1):293.10.1186/s12903-021-01651-8818869734107931 Search in Google Scholar

30. Do TA, Le HS, Shen YW, Huang HL, Fuh LJ. Risk Factors related to Late Failure of Dental Implant-A Systematic Review of Recent Studies. Int J Environ Res Public Health. 2020;17(11):3931.10.3390/ijerph17113931731280032498256 Search in Google Scholar

eISSN:
2601-6877
Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Life Sciences, other, Medicine, Clinical Medicine, Surgery, Materials Sciences