Accesso libero

Morphological effects of mesenchymal stem cells and pulsed ultrasound on condylar growth in rats: a pilot study

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Tulloch JF, Phillips C, Proffit WR. Benefit of early Class II treatment: progress report of a two-phase randomized clinical trial. Am J Orthod Dentofacial Orthop 1998;113:62-72. Search in Google Scholar

O’Brien K, Wright J, Conboy F, Sanjie Y, Mandall N, Chadwick S et al. Effectiveness of early orthodontic treatment with the Twin-block appliance: a multicenter, randomized, controlled trial. Part 1: Dental and skeletal effects. Am J Orthod Dentofacial Orthop 2003;124:234-43. Search in Google Scholar

Tang T, Rabie AB, Hagg U. Indian Hedgehog: a mechanotransduction mediator in condylar cartilage. J Dent Res 2004;83:434-8. Search in Google Scholar

Ng TC, Chiu KW, Rabie AB, Hagg U. Repeated mechanical loading enhances the expression of Indian hedgehog in condylar cartilage. Front Biosc 2006;11:943-8. Search in Google Scholar

Rabie AB, Wong L, Tsai M. Replicating mesenchymal cells in the condyle and the glenoid fossa during mandibular forward positioning. Am J Orthod Dentofacial Orthop 2003;123:49-57. Search in Google Scholar

Teixeira VC, Teixeira AC, Luz JG. Skeletal changes alter experimentally displaced condylar process fracture in growing rats. J Craniomaxillofac Surg 2006;34:220-5. Search in Google Scholar

Sugito H, Shibukawa Y, Kinumatsu T, Yasuda T, Nagayama M, Yamada S et al. Ihh signaling regulates mandibular symphysis development and growth. J Dent Res 2011;90:625-31. Search in Google Scholar

Ramirez-Yañez G, Smid J, Young W, Waters M. Influence of growth hormone on the craniofacial complex of transgenic mice. Eur J Orthod 2005;27:494-500. Search in Google Scholar

Bi W, Deng J, Zhang Z, Behringer R, De Crombrugghe B. Sox-9 is required for cartilage formation. Nat Genet 1999;22:85-9. Search in Google Scholar

Hattori T, Müller C, Gebhard S, Bauer E, Pausch F, Schlund B et al. SOX9 is a major negative regulator of cartilage vascularization, bone marrow formation and endochondral ossification. Development 2010;137:901-11. Search in Google Scholar

Carvelaro, MF, Cermelli S, Cancedda R, Descalzi Cancedda F. Vascular endotelial growth factor (VEGF) in cartilage neovascularization and chondrocyte differentiation: auto-paracrine role during endochondral bone formation. J Cell Sci 2000;113:59-69. Search in Google Scholar

Rabie AB, Shum L, Chayanupaktul A. VEGF and bone formation in the glenoid fossa during forward mandibular positioning. Am J Orthod Dentofacial Orthop 2002;122:202-9. Search in Google Scholar

El-Bialy T, Hassan A, Albaghdadi T, Fouad HA, Maimani AR. Growth modification of the mandible with ultrasound in baboons: a preliminary report. Am J Orthod Dentofacial Orthop 2006;130:435. e7-14. Search in Google Scholar

Oyonarte R, Zarate M, Rodriguez F. Low intensity pulsed ultrasound stimulation of condylar growth in rats. Angle Orthod 2009;79:964-70. Search in Google Scholar

Rabie AB, Leung FY, Chayanupaktul A, Hägg U. The correlation between neovascularization and bone formation in the condyle during forward mandibular positioning. Angle Orthod 2002;72:431-8. Search in Google Scholar

Schortinghuis J, Stegenga B, Raghoebar GM, de Bont LG. Ultrasound stimulation of maxillofacial bone healing. Crit Rev Oral Biol Med 2003;14:63-74. Search in Google Scholar

Kristiansen TK, Ryaby JP, McCabe J, Frey JJ, Roe LR. Accelerated healing of distal radial fractures with the use of specific, low-intensity ultrasound. A multicenter, prospective, randomized, double-blind, placebo-controlled study. J Bone Joint Surg Am 1997;79:961-73. Search in Google Scholar

Busse JW, Kaur J, Mollon B, Bhandari M, Tornetta P, Schünemann HJ et al. Low intensity pulsed ultrasonography for fractures: systematic review of randomized controlled trials. BMJ (Clinical research ed) 2009;27:338-51. Search in Google Scholar

Kobayashi Y, Sakai D, Iwashina T, Iwabuchi S, Mochida J. Low-intensity pulsed ultrasound stimulates cell proliferation, proteoglycan synthesis and expression of growth factor-related genes in human nucleus pulposus cell line. Eur Cell Mater 2009;17:15-22. Search in Google Scholar

El-Bialy T, El-Shamy I, Graber TM. Growth modification of rabbit mandible using therapeutic ultrasound: Is it possible to enhance functional appliance results? Angle Orthod 2003;73:631-9. Search in Google Scholar

Lee HJ, Choi BH, Min BH, Son YS, Park SR. Low-intensity ultrasound stimulation enhances chondrogenic differentiation in alginate culture of mesenchymal stem cells. Artif Organs 2006;30:707-15. Search in Google Scholar

Cui JH, Park SR, Park K, Choi BH, Min BH. Preconditioning of mesenchymal stem cells with low-intensity ultrasound for cartilage formation in vivo. Tissue Eng 2007;13: 351-60. Search in Google Scholar

Choi BH, Choi MH, Kwak MG, Min BH, Woo ZH, Park SR. Mechanotransduction pathways of low-intensity ultrasound in C-28/I2 human chondrocyte cell line. Proc Inst Mech Eng H 2007;221:527-35. Search in Google Scholar

El-Bialy T, Uludag H, Jomha N, Badylak SF. In vivo ultrasound-assisted tissue-engineered mandibular condyle: A pilot study in rabbits. Tissue Eng Part C Methods 2010;16:1315-23. Search in Google Scholar

Ebisawa K, Hata K, Okada K, Kimata K, Ueda M, Torii S et al. Ultrasound enhances transforming growth factor beta-mediated chondrocyte differentiation of human mesenchymal stem cells. Tissue Eng 2004;10:921-9. Search in Google Scholar

Cui JH, Park K, Park SR, Min BH. Effects of low-intensity ultrasound on chondrogenic differentiation of mesenchymal stem cells embedded in polyglycolic acid: An in vivo study. Tissue Eng 2006;12:75-82. Search in Google Scholar

Saito M, Soshi S, Tanaka T, Fujii K. Intensity-related differences in collagen post-translational modification in MC3T3-E1 osteoblasts after exposure to low- and high-intensity pulsed ultrasound. Bone 2004;35:644-55. Search in Google Scholar

Sena K, Leven RM, Mazhar K, Sumner DR, Virdi AS. Early gene response to low-intensity pulsed ultrasound in rat osteoblastic cells. Ultrasound Med Biol 2005;31:703-8. Search in Google Scholar

Tam KF, Cheung WH, Lee KM, Qin L, Leung KS. Osteogenic effects of low intensity pulsed ultrasound, extracorporeal shockwaves and their combination – an in vitro comparative study on human periosteal cells. Ultrasound Med Biol 2008;34:1957-65. Search in Google Scholar

Suzuki A, Takayama T, Suzuki N, Kojima T, Ota N, Asano S et al. Daily low-intensity pulsed ultrasound stimulates production of bone morphogenetic protein in ROS 17/2.8 cells. J Oral Sci 2009;51:29-36. Search in Google Scholar

Fortier L. Stem cells: classifications, controversies, and clinical applications. Vet Surg 2005;34:415-23. Search in Google Scholar

Salinas CN, Anseth KS. Mesenchymal stem cells for craniofacial tissue regeneration: designing hydrogel delivery vehicles. J Dent Res 2009;88:681-92. Search in Google Scholar

Donzelli E, Salvadè A, Mimo P, Viganò M, Morrone M, Papagna R et al. Mesenchymal stem cells cultured on a collagen scaffold: in vitro osteogenic differentiation. Arch Oral Biol 2007;52:64-73. Search in Google Scholar

Moioli EK, Clark PA, Chen M, Dennis JE, Erickson HP, Gerson SL et al. Synergistic actions of hematopoietic and mesenchymal stem/progenitor cells in vascularizing bioengineered tissues. PLoS One 2008;3:3922. Search in Google Scholar

Lin NH, Gronthos S, Bartold PM. Stem cells and future periodontal regeneration. Periodontol 2000 2009;51: 239-51. Search in Google Scholar

Ji YM, Jeon SH, Park JY, Chung JH, Choung YH, Choung PH. Dental stem cell therapy with calcium hydroxide in dental pulp capping. Tissue Eng Part A 2010;16:1823-33. Search in Google Scholar

Ruan JL, Wang YN, Crum L, Mitchell S. Effect of low intensity pulsed ultrasound on mesenchymal stem cells. J Acoust Soc Am 2011;129:2576. Search in Google Scholar

Caplan AI. Review: mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Eng 2005;11:1198-211. Search in Google Scholar

Sorrell JM, Caplan AI. Topical delivery of mesenchymal stem cells and their function in wounds. Stem Cell Res Ther 2010;1:30. Search in Google Scholar

Yang KH, Parvizi J, Wang SJ, Lewallen DG, Kinnick RR, Greenleaf JF et al. Exposure to low-intensity ultrasound increases aggrecan gene expression in a rat femur fracture model. J Orthop Res 1996;14:802-9. Search in Google Scholar

Parvizi J, Wu CC, Lewallen DG, Greenleaf JF, Bolander ME. Low-intensity ultrasound stimulates proteoglycan synthesis in rat chondrocytes by increasing aggrecan gene expression. J Orthop Res 1999;17:488-94. Search in Google Scholar

Zhang Zi, Huckle J, Francomano CA, Spencer RG. The influence of pulsed low-intensity ultrasound on matrix production of chondrocytes at different stages of differentiation: an explant study. Ultrasound Med Biol 2002;28:1547-53. Search in Google Scholar

Irie Y, Mizumoto H, Fujino S, Kajiwara T. Reconstruction of cartilage tissue using scaffold-free organoid culture technique. J Biosci Bioeng 2008;105:450-3. Search in Google Scholar

Uenaka K, Imai S, Ando K, Matsusue Y. Relation of low-intensity pulsed ultrasound to the cell density of scaffold-free cartilage in a high-density static semi-open culture system. J Orthop Sci 2010;15:816-24. Search in Google Scholar

Maret D, Molinier F, Braga J, Peters OA, Telmon N, Treil J et al. Accuracy of 3D reconstructions based on cone beam computed tomography. J Dent Res 2010;89:1465-9. Search in Google Scholar

Spaeth E, Klopp A, Dembinski J, Andreeff M, Marini F. Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Ther 2008;15:730-8. Search in Google Scholar

eISSN:
2207-7480
Lingua:
Inglese
Frequenza di pubblicazione:
Volume Open
Argomenti della rivista:
Medicine, Basic Medical Science, other