[
Abernathy J.,. Overturf K., (2019). Expression of antisense long noncoding RNAs as potential regulators in rainbow trout with different tolerance to plant-based diets. Anim. Biotechnol., 30: 87–94.
]Search in Google Scholar
[
Adamse P., Dagand E., Bohmert-Tatarev K., Wahler D., Miranda M., Kok E.J. Bendiek J. (2021). GMO Genetic Elements Thesaurus (GMO-GET): A controlled vocabulary for the consensus designation of introduced or modified genetic elements in genetically modified organisms. BMC Bioinformatics, 22: 1–15.
]Search in Google Scholar
[
Alcivar‐Warren A., Dunham R., Gaffney P., Kocher T., Thorgaard G. (1997). First aquaculture species genome mapping workshop.
]Search in Google Scholar
[
Ali I., Khan S., Shah K., Haroon, Kalimullah, (2021). Microscopic analysis of plant‐ mediated silver nanoparticle toxicity in rainbow trout fish (Oncorhynchus mykiss). Micro. Res. Techniq., 84: 2302–2310.
]Search in Google Scholar
[
Anastasiadi D., Piferrer F. (2020). A clockwork fish: Age prediction using DNA methylation‐based biomarkers in the European seabass. Mol. Ecol. Res., 20: 387–397.
]Search in Google Scholar
[
Aparicio S., Chapman J., Stupka E., Putnam N., Chia J.M., Dehal P., Christoffels A., Rash S., Hoon S., Smit A., Gelpke M.D.S. (2002). Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Sci., 297: 1301–1310.
]Search in Google Scholar
[
Aramburu O., Blanco A., Bouza C., Martínez P. (2023). Integration of host-pathogen functional genomics data into the chromosome-level genome assembly of turbot (Scophthalmus maximus). Aquaculture., 564: 739067.
]Search in Google Scholar
[
Ashton D.T., Ritchie P.A., Wellenreuther M. (2019). High-density linkage map and QTLs for growth in snapper (Chrysophrys auratus). G3: Genes Genomes Genet., 9: 1027–1035.
]Search in Google Scholar
[
Bao L., Tian C., Liu S., Zhang Y., Elaswad A., Yuan Z., Khalil K., Sun F., Yang Y., Zhou T., Li N. (2019). The Y chromosome sequence of the channel catfish suggests novel sex determination mechanisms in teleost fish. BMC Biology., 17: 1–16.
]Search in Google Scholar
[
Barría A., Peñaloza C., Papadopoulou A., Mahmuddin M., Doeschl‐Wilson A., Benzie J.A., Houston R.D., Wiener, P. (2023). Genetic differentiation following recent domestication events: A study of farmed Nile tilapia (Oreochromis niloticus) populations. Evol. Appl.: 1220–1235.
]Search in Google Scholar
[
Bedekar M.K. Kole S. (2022). DNA Vaccines for fish. In Advances in fisheries biotechnology. Singa. Spring., 289–336
]Search in Google Scholar
[
Bernard M., Dehaullon A., Gao G., Paul K., Lagarde H., Charles M., Prchal M., Danon J., Jaffrelo L., Poncet C., Patrice P., (2022). Development of a high-density 665 K SNP array for rainbow trout genome-wide genotyping. Front. Genet., 13: 941340.
]Search in Google Scholar
[
Besson M., Komen H., Rose G., Vandeputte M. (2020). The genetic correlation between feed conversion ratio and growth rate affects the design of a breeding program for more sustainable fish production. Genet. Select. Evol., 52: 1–10.
]Search in Google Scholar
[
Bian L., Li F., Ge J., Wang P., Chang Q., Zhang S., Li J., Liu C., Liu K., Liu X. and Li X., (2020). Chromosome‐level genome assembly of the greenfin horse‐faced filefish (Thamnaconus septentrionalis) using Oxford Nanopore PromethION sequencing and Hi‐C technology. Mol., Ecol., Res., 20: 1069–1079.
]Search in Google Scholar
[
Boison S., Ding J., Leder E., Gjerde B., Bergtun P.H., Norris A., Baranski M., Robinson N. (2019). QTLs associated with resistance to cardiomyopathy syndrome in Atlantic salmon. J. Hered., 110: 727–737.
]Search in Google Scholar
[
Booncherd K., Sreebun S., Pasomboon P., Boonanuntanasarn S. (2024). Effects of CRISPR/Cas9-mediated dnd1 knockout impairs gonadal development in striped catfish. Anim., 18: 101039.
]Search in Google Scholar
[
Brown J.K., Taggart J.B., Bekaert M., Wehner S., Palaiokostas C., Setiawan A.N., Symonds J.E. and Penman D.J. (2016). Mapping the sex determination locus in the hāpuku (Polyprion oxygeneios) using ddRAD sequencing. BMC Genomics.17: 1–12.
]Search in Google Scholar
[
Buwono I.D., Iskandar I. and Grandiosa R, (2021). Growth hormone transgenesis and feed composition influence growth and protein and amino acid content in transgenic G 3 mutiara catfish (Clarias gariepinus). Aquac. Int.., 29: 431–451.
]Search in Google Scholar
[
Cádiz M.I., López M.E., Diaz-Dominguez D., Caceres G., Yoshida G.M., Gomez-Uchida D., Yanez J.M. (2020). Whole genome re-sequencing reveals recent signatures of selection in three strains of farmed Nile tilapia (Oreochromis niloticus). Sci. Rep., 10: 11514.
]Search in Google Scholar
[
Cai W., He S., Liang X.F., Yuan X. (2018). DNA methylation of T1R1 gene in the vegetarian adaptation of grass carp Ctenopharyngodon idella. Sci. Rep., 8: 6934.
]Search in Google Scholar
[
Calduch-Giner J.A., Sitjà-Bobadilla A., Pérez-Sánchez J. (2016). Gene expression profiling reveals functional specialization along the intestinal tract of a carnivorous teleostean fish (Dicentrarchus labrax). Front. phys., 7: 359.
]Search in Google Scholar
[
Callet T., Dupont-Nivet M., Cluzeaud M., Jaffrezic F., Laloë D., Kerneis T., Labbé L., Quillet E., Geurden I., Mazurais D., Skiba-Cassy S. (2018). Detection of new pathways involved in the acceptance and the utilisation of a plant-based diet in isogenic lines of rainbow trout fry. PLoS One, 13: e0201462.
]Search in Google Scholar
[
Canário A.V. (2019). Aquaculture genomics. Aquac. Fish., 4:12.
]Search in Google Scholar
[
Carrington B., Ramanagoudr-Bhojappa R., Bresciani E., Han T.U., Sood, R. (2022). A robust pipeline for efficient knock-in of point mutations and epitope tags in zebrafish using fluorescent PCR based screening. BMC Genomics, 23: 810.
]Search in Google Scholar
[
Che J., Hu C., Wang Q., Fan C., Si Y., Gong X., Bao B. (2023). The double mutations of acvr2aa and acvr2ba leads to muscle hypertrophy in zebrafish. Aquac Fish., 8: 706–712.
]Search in Google Scholar
[
Chen B., Zhou Z., Ke Q., Wu Y., Bai H., Pu F., Xu P. (2019a). The sequencing and de novo assembly of the Larimichthys crocea genome using PacBio and Hi-C technologies. Sci. Data, 6: 188.
]Search in Google Scholar
[
Chen H., Wang J., Du J., Si Z., Yang H., Xu X., Wang, C. (2019b). ASIP disruption via CRISPR/Cas9 system induces black patches dispersion in Oujiang color common carp. Aquaculture, 498: 230–235.
]Search in Google Scholar
[
Chen L., Peng W., Kong S., Pu F., Chen B., Zhou Z., Feng J., Li X., Xu, P. (2018). Genetic mapping of head size related traits in common carp (Cyprinus carpio). Front. in Genet., 9: 448.
]Search in Google Scholar
[
Chen T.T., Powers D.A. (1990). Transgenic fish. Trends Biotechnol., 8: 209–215.
]Search in Google Scholar
[
Chen X., Peng M., Yang C., Li Q., Feng P., Zhu W., Zhang Y., Zeng D., Zhao, Y. (2024). Genome-wide QTL and eQTL mapping reveal genes associated with growth rate trait of the Pacific white shrimp (Litopenaeus vannamei). BMC Genomics, 25: 414.
]Search in Google Scholar
[
Chouhan N., Dekari D., Choudhary B., Singh A., Choudhury T.G. (2023). Environmental DNA (eDNA) technology: Fisheries and aquaculture perspectives. Ind. J. Anim. H., 62: 2.
]Search in Google Scholar
[
Cleveland B.M., Habara S., Oikawa J., Radler L.M., Shimizu M. (2020). Compensatory response of the somatotropic axis from IGFBP-2b gene editing in rainbow trout (Oncorhynchus mykiss). Genes, 11: 1488.
]Search in Google Scholar
[
Collins C. Lorenzen N., Collet B. (2019). DNA vaccination for finfish aquaculture. F. S. Immunol., 85: 106–125.
]Search in Google Scholar
[
Connon R.E., Jeffries K.M., Komoroske L.M., Todgham A.E., Fangue N.A. (2018). The utility of transcriptomics in fish conservation. J. Exp. Biol., 221: jeb148833.
]Search in Google Scholar
[
Coogan M., Alston V., Su B., Khalil K., Elaswad A., Khan M., Simora R.M., Johnson A., Xing D., Li S., Wang J. (2022). CRISPR/Cas-9 induced knockout of myostatin gene improves growth and disease resistance in channel catfish (Ictalurus punctatus). Aquaculture, 557: 738290.
]Search in Google Scholar
[
Coogan M., Xing D., Su B., Alston V., Johnson A., Khan M., Khalil K., Elaswad A., Li S., Wang J., Lu C. (2023). CRISPR/Cas9-mediated knock-in of masu salmon (Oncorhyncus masou) elongase gene in the melanocortin-4 (mc4r) coding region of channel catfish (Ictalurus punctatus) genome. Trans. Res., 32: 251–264.
]Search in Google Scholar
[
Dai P., Kong J., Wang S., Lu X., Luo K., Cao B., Meng X., Luan S. (2018). Identification of SNPs associated with residual feed intake from the muscle of Litopenaeus vannamei using bulk segregant RNA-seq. Aquaculture, 497: 56–63.
]Search in Google Scholar
[
Daniels R.R., Taylor R.S., Robledo D., Macqueen D.J. (2023). Single cell genomics as a transformative approach for aquaculture research and innovation. Rev. Aquac., 15: 1618–1637.
]Search in Google Scholar
[
Das P., Sahoo L., Das S.P., Bit A., Joshi C.G., Kushwaha B., Kumar D., Shah T.M., Hinsu A.T., Patel N., Patnaik S. (2020). De novo assembly and genome-wide SNP discovery in Rohu Carp, Labeo rohita. Front. Genet., 11: 386.
]Search in Google Scholar
[
Datsomor A.K., Olsen R.E., Zic N., Madaro A., Bones A.M., Edvardsen R.B., Wargelius A., Winge P. (2019). CRISPR/Cas9-mediated editing of Δ5 and Δ6 desaturases impairs Δ8-desaturation and docosahexaenoic acid synthesis in Atlantic salmon (Salmo salar L.). Sci. Rep., 9: 16888.
]Search in Google Scholar
[
De Ronne M., Légaré G., Belzile F., Boyle B., Torkamaneh D. (2023). 3D-GBS: A universal genotyping-by-sequencing approach for genomic selection and other high-throughput low-cost applications in species with small to medium-sized genomes. Plant Methods, 19: 13.
]Search in Google Scholar
[
Desvignes T., Bardou P., Montfort J., Sydes J., Guyomar C., George S., Postlethwait J.H., Bobe J. (2022). FishmiRNA: An evolutionarily supported microRNA annotation and expression database for ray-finned fishes. Mol. Bio. Evol., 39:004.
]Search in Google Scholar
[
Dong C., Jiang P., Zhang J., Li X., Li S., Bai J., Fan J., Xu P. (2019). High-density linkage map and mapping for sex and growth-related traits of largemouth bass (Micropterus salmoides). Front. Genet., 10: 960.
]Search in Google Scholar
[
Doyon Y., McCammon J.M., Miller J.C., Faraji F., Ngo C., Katibah G.E., Amora R., Hocking T.D., Zhang L., Rebar E.J., Gregory P.D. (2008). Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat. Biotechnol., 26: 702–708.
]Search in Google Scholar
[
Dvergedal H., Ødegård J., Øverland M., Mydland L.T., Klemetsdal G. (2019). Indications of a negative genetic association between growth and digestibility in juvenile Atlantic salmon (Salmo salar). Aquaculture, 510: 66–72.
]Search in Google Scholar
[
Edvardsen R.B., Leininger S., Kleppe L., Skaftnesmo K.O., Wargelius A. (2014). Targeted mutagenesis in Atlantic salmon (Salmo salar) using the CRISPR/Cas9 system induces complete knockout individuals in the F0 generation. PloS One, 9: 108622.
]Search in Google Scholar
[
Elaswad A., Khalil K., Ye Z., Liu Z., Liu S., Peatman E., Odin R., Vo K., Drescher D., Gosh K., Qin G. (2018). Effects of CRISPR/Cas9 dosage on TICAM1 and RBL gene mutation rate, embryonic development, hatchability and fry survival in channel catfish. Sci. Rep, 8: 16499.
]Search in Google Scholar
[
Embregts C.W., Rigaudeau D., Tacchi L., Pijlman G.P., Kampers L., Veselý T., Pokorová D., Boudinot P., Wiegertjes G.F.,Forlenza M. (2019). Vaccination of carp against SVCV with an oral DNA vaccine or an insect cells-based subunit vaccine. F. S. Immunol., 85: 66–77.
]Search in Google Scholar
[
Eswaran S. (2022). Specific pathogen free (SPF) shrimps in aquaculture. In Advances in fisheries biotechnology (465–470).
]Search in Google Scholar
[
Fan G., Song Y., Huang X., Yang L., Zhang S., Zhang M., Yang X., Chang Y., Zhang, H., Li, Y. and Liu, S., (2020). Initial data release and announcement of the Fish10K: Fish 10,000 Genomes Project. 30: 787028.
]Search in Google Scholar
[
Fang S., Zhang Y., Shi X., Zheng H., Li S., Zhang Y., Fazhan H., Waiho K., Tan H., Ikhwanuddin M., Ma H., (2020). Identification of male-specific SNP markers and development of PCR-based genetic sex identification technique in crucifix crab (Charybdis feriatus) with implication of an XX/XY sex determination system. Genomics, 112: 404–411.
]Search in Google Scholar
[
FAO. 2022. Database of Farmed types in Aquaculture. In: Food and Agriculture Organization of the United Nations [online]. Rome. Database version 1-2022. https://www.fao.org/fishery/aquagris/home.
]Search in Google Scholar
[
FAO. 2023. Fishery and aquaculture statistics. Global aquaculture production 1950–2021 (FishStatJ). In: FAO fisheries and aquaculture division [online]. Rome. Updated 2023. http://www.fao.org/fishery/statistics/software/fishstatj/en.
]Search in Google Scholar
[
Feng X., Yu X., Fu B., Wang X., Liu H., Pang M., Tong J. (2018). A high-resolution genetic linkage map and QTL fine mapping for growth-related traits and sex in the Yangtze River common carp (Cyprinus carpio haematopterus). BMC Genomics, 19: 1–13.
]Search in Google Scholar
[
Fernández K., McMillan S., Sprague M., Martínez-Rubio L., Norris A., Stubhaug I., Mukiibi R., Robledo Betancor, M.B. (2023). Assessing early utilisation of vegetable-based feed and its interaction with genotype and epigenetics in Atlantic salmon. Aquaculture, 2023.
]Search in Google Scholar
[
Feron R., Pan Q., Wen M., Imarazene B., Jouanno E., Anderson J., Herpin A., Journot L., Parrinello H., Klopp C., Kottler V.A. (2021). RADSex: A computational workflow to study sex determination using restriction site‐ associated DNA sequencing data. Mol. Eco. Res., 21: 1715–1731.
]Search in Google Scholar
[
Feron R., Zahm M. Cabau C., Klopp C., Roques C., Bouchez O., Eché C., Valière S., Donnadieu C., Haffray P. and Bestin, A., (2020). Characterization of a Y‐ specific duplication/insertion of the anti‐Mullerian hormone type II receptor gene based on a chromosome‐scale genome assembly of yellow perch, Perca flavescens. Mol. Eco. Res., 20: 531–543.
]Search in Google Scholar
[
Fraslin C., Dechamp N., Bernard M., Krieg F., Hervet C., Guyomard R., Esquerré D., Barbieri J., Kuchly C., Duchaud E., Boudinot P. (2018). Quantitative trait loci for resistance to Flavobacterium psychrophilum in rainbow trout: effect of the mode of infection and evidence of epistatic interactions. Gene. Select. Evol., 50: 1–16.
]Search in Google Scholar
[
Friedman K.J., Bartley D.M., Rodríguez-Ezpeleta N., Mair G.C., Ban N., Beveridge M., Carolsfeld J., Carvalho G., Cowx I.C., Dean G. and Glazov E. (2022). Current and future genetic technologies for fisheries and aquaculture: implications for the work of FAO. FAO. Fish. Aquac. Cir., 1387: I–55.
]Search in Google Scholar
[
Gao F.X., Shi Y., Duan W., Lu W.J., Huang,W., Zhang X.J., Zhao Z., Zhou L., Gui, J.F. (2020). A rapid and reliable method for identifying genetic sex in obscure pufferfish (Takifugu obscurus). Aquaculture, 519: 734749.
]Search in Google Scholar
[
Ge H., Lin K., Shen M., Wu S., Wang Y., Zhang Z., Wang Z., Zhang Y., Huang Z., Zhou C., Lin Q. (2019). De novo assembly of a chromosome‐level reference genome of red‐spotted grouper (Epinephelus akaara) using nanopore sequencing and Hi‐C. Mol. Ecol. Res., 19: 1461–1469.
]Search in Google Scholar
[
Genome 10K Community of Scientists, 2009. Genome 10K: a proposal to obtain whole-genome sequence for 10 000 vertebrate species. J. Hered., 100: 659–674.
]Search in Google Scholar
[
Gjedrem T. (2010). The first family‐based breeding program in aquaculture. Reviews in Aquaculture, 2: 2–15.
]Search in Google Scholar
[
Gjedrem T., Rye M. (2018). Selection response in fish and shellfish: a review. Rev. Aquac.. 10: 168–179.
]Search in Google Scholar
[
Gong G., Dan C., Xiao S., Guo W., Huang P., Xiong Y., Wu J., He Y., Zhang J., Li, X., Chen N., (2018). Chromosomal-level assembly of yellow catfish genome using third-generation DNA sequencing and Hi-C analysis. Giga Science, 7: 120.
]Search in Google Scholar
[
González Sotelo C., Boufana B., Calvo D., Griffiths A.M., Jérôme M., Käppel C., Maguire J., Mariani S., Mendes R., Pérez Martín R.I. and Schröder U. (2014). Labelfish–towards a universal methodology to combat seafood fraud. WEFTA 2014 SEAFOOD science for a changing demand. Oral presentations.
]Search in Google Scholar
[
Griot R., Allal F., Phocas F., Brard-Fudulea S., Morvezen R., Bestin A., Haffray P., François Y., Morin T., Poncet C., Vergnet A. (2021). Genome-wide association studies for resistance to viral nervous necrosis in three populations of European sea bass (Dicentrarchus labrax) using a novel 57k SNP array DlabChip. Aquaculture, 530: 735930.
]Search in Google Scholar
[
Gunn J.C., Berkman L.K., Koppelman J., Taylor A.T., Brewer S.K., Long J.M. and Eggert L.S. (2022). Genomic divergence, local adaptation, and complex demographic history may inform the management of a popular sportfish species complex. Ecol. Evol., 12: 9370.
]Search in Google Scholar
[
Guo J., Wang A., Mao S., Xu X., Li, J., Shen Y. (2022). Construction of high-density genetic linkage map and QTL mapping for growth performance in black carp (Mylopharyngodon piceus). Aquaculture, 549: 737799.
]Search in Google Scholar
[
Guo X., Puritz, J.B., Wang, Z., Proestou, D., Allen Jr, S., Small, J., Verbyla, K., Zhao H., Haggard J., Chriss N., Zeng D. (2023). Development and evaluation of high-density SNP arrays for the Eastern oyster Crassostrea virginica. Mar. Biotech., 25: 174–191.
]Search in Google Scholar
[
Güralp H., Skaftnesmo K.O., Kjærner-Semb E., Straume A.H., Kleppe L., Schulz R.W., Edvardsen R.B., Wargelius A. (2020). Rescue of germ cells in dnd crispant embryos opens the possibility to produce inherited sterility in Atlantic salmon. Sci. Rep. 10: 18042.
]Search in Google Scholar
[
Gutási A., Hammer S.E., El-Matbouli M., Saleh M. (2023). Recent applications of gene editing in fish species and aquatic medicine. Anim., 13: 1250.
]Search in Google Scholar
[
Gutierrez A.P., Matika O., Bean T.P., Houston R.D. (2018). Genomic selection for growth traits in Pacific oyster (Crassostrea gigas): Potential of low-density marker panels for breeding value prediction. Front. Genet., 9: 406679.
]Search in Google Scholar
[
Hai D.M., Yen D.T., Liem P.T., Tam B.M., Huong D.T.T., Hang B.T.B., Hieu D.Q., Garigliany M.M., Coppieters W., Kestemont P., Phuong, N.T., 2022. A High-Quality Genome Assembly of Striped Catfish (Pangasianodon hypophthalmus) Based on Highly Accurate Long-Read HiFi Sequencing Data. Genes, 13: 923.
]Search in Google Scholar
[
Hakim M.M., Ganai N.A., Ahmad S.M., Asmi O., Akram T., Hussain S., Gora A.H., (2018). Nutrigenomics: Omics approach in aquaculture research to mitigate the deficits in conventional nutritional practices. J. Entomol. Zool. Stud., 6: 582–587.
]Search in Google Scholar
[
Han C., Huang W., Peng S., Zhou J., Zhan H., Gui L., Li W., Li Q., (2023). Screening and characterization of sex-specific markers by NGS sequencing in Spinibarbus hollandi with implication of XY sex determination system. Aquaculture, 565: 739147.
]Search in Google Scholar
[
Han Z., Li Q., Xu C., Liu S., Yu H., Kong L. (2021). QTL mapping for orange shell color and sex in the Pacific oyster (Crassostrea gigas). Aquaculture, 530: 735781.
]Search in Google Scholar
[
Haro-Moreno J.M., Coutinho F.H., Zaragoza-Solas A., Picazo A., Almagro-Moreno S., Lopez-Perez M. (2020). Dysbiosis in marine aquaculture revealed through microbiome analysis: reverse ecology for environmental sustainability. FEMS. Microbio. Ecol., 96: 218.
]Search in Google Scholar
[
Harper L., Campbell J., Cannon E.K., Jung S., Poelchau M., Walls R., Andorf C., Arnaud E., Berardini T.Z., Birkett C., Cannon S. (2018). AgBioData consortium recommendations for sustainable genomics and genetics databases for agriculture. Database, 2018: 088.
]Search in Google Scholar
[
Hays H., Gu Z., Mai K., Zhang W. (2023). Transcriptome-based nutrigenomics analysis reveals the roles of dietary taurine in the muscle growth of juvenile turbot (Scophthalmus maximus). Comp. Biochem. Physiol. Part D: Genom. Pro., 47: 101120.
]Search in Google Scholar
[
Hilerio-Ruiz A., Toledo-Solís F.J., Peña E., Martínez-Burguete T., Martínez-García R., Llera-Herrera R., Álvarez-González C.A., de Rodrigáñez M.S. (2021). Nutrigenomic markers identified by de novo RNAseq during the early ontogeny of the three spot cichlid Amphilophus trimaculatus. Aquaculture, 530: 735654.
]Search in Google Scholar
[
Hillestad B., Moghadam H.K. (2019). Genome-wide association study of piscine myocarditis virus (PMCV) Resistance in Atlantic Salmon (Salmo salar). J. of Hered., 110: 720–726.
]Search in Google Scholar
[
Houston, R.D., Bean, T.P., Macqueen, D.J., Gundappa, M.K., Jin, Y.H., Jenkins, T.L., Selly, S.L.C., Martin, S.A., Stevens, J.R., Santos, E.M. and Davie, A., 2020. Harnessing genomics to fast-track genetic improvement in aquaculture. Nat. Rev. Genet., 21: 389–409.
]Search in Google Scholar
[
Hua X., Zhou Y., Feng Y., Duan K., Ren X., Sun J., Gao S., Wang N., Li, J., Yang J. and Xia D. (2021). Oral vaccine against IPNV based on antibiotic-free resistance recombinant Lactobacillus casei expressing CK6-VP2 fusion protein. Aquaculture, 535: 736425.
]Search in Google Scholar
[
Huang S., Yoshitake K., Watabe S. and Asakawa S. (2022). Environmental DNA study on aquatic ecosystem monitoring and management: Recent advances and prospects. J. Enviro. Manag., 323:.116310.
]Search in Google Scholar
[
Huang X., Jiang Y., Zhang W., Cheng Y., Wang Y., Ma X., Duan Y., Xia, L., Chen Y., Wu N., Shi M. (2020). Construction of a high-density genetic map and mapping of growth related QTLs in the grass carp (Ctenopharyngodon idellus). BMC Genomics, 21: 1–12.
]Search in Google Scholar
[
Huerlimann R., Cowley J.A., Wade N.M., Wang Y., Kasinadhuni, N., Chan, C.K.K., Jabbari J.S., Siemering K., Gordon L., Tinning M., Montenegro J.D., 2022. Genome assembly of the Australian black tiger shrimp (Penaeus monodon) reveals a novel fragmented IHHNV EVE sequence. G3:Genes, Genomes, Genet. 12: 034.
]Search in Google Scholar
[
Jackson, T.K. and Rhode, C., 2024. A high-density genetic linkage map and QTL identification for growth traits in dusky kob (Argyrosomus japonicus). Aquaculture, 586: 740786.
]Search in Google Scholar
[
Jiang Q., Qian L., Gu S., Guo X., Zhang X., Sun L. (2020). Investigation of growth retardation in Macrobrachium rosenbergii based on genetic/epigenetic variation and molt performance. Compara. Biochem. Physiol. Part D: Genom. Prot., 35: 100683.
]Search in Google Scholar
[
Jin S., Bian C., Jiang S., Han K., Xiong Y., Zhang W., Shi C., Qiao H., Gao Z., Li R., Huang Y. (2021). A chromosome-level genome assembly of the oriental river prawn, Macrobrachium nipponense. G. Sci., 10: 160.
]Search in Google Scholar
[
Jin Y., Zhou T., Jiang W., Li N., Xu X., Tan S., Shi H., Yang Y., Yuan Z., Wang W., Qin G. (2022). Allelically and Differentially Expressed Genes After Infection of Edwardsiella ictaluri in Channel Catfish as Determined by Bulk Segregant RNASeq. Mar. Biotechnol., 24: 174–189.
]Search in Google Scholar
[
Johnston I.A., Kent M.P., Boudinot P., Looseley M., Bargelloni L., Faggion S., Merino G.A., Ilsley G.R., Bobe J., Tsigenopoulos C.S., Robertson J. (2024). Advancing fish breeding in aquaculture through genome functional annotation. Aquaculture, 583: 740589.
]Search in Google Scholar
[
Jones S.W., Karpol A., Friedman S., Maru B.T., Tracy B.P. (2020). Recent advances in single cell protein use as a feed ingredient in aquaculture. Curr. Opin. Biotech., 61: 189–197.
]Search in Google Scholar
[
Joshi R., Árnyasi M., Lien S., Gjøen H.M., Alvarez A.T., Kent M. (2018). Development and validation of 58K SNP-array and high-density linkage map in Nile tilapia (O. niloticus). Front in Genet., 9: 472.
]Search in Google Scholar
[
Kause A., Nousiainen A.,Koskinen H. (2022). Improvement in feed efficiency and reduction in nutrient loading from rainbow trout farms: the role of selective breeding. J. Anim. Sci., 100: 214.
]Search in Google Scholar
[
Kawato S., Nishitsuji K., Arimoto A., Hisata K., Kawamitsu M., Nozaki R., Kondo H., Shinzato C., Ohira T., Satoh N., Shoguchi, E. (2021). Genome and transcriptome assemblies of the kuruma shrimp, Marsupenaeus japonicus. G3: Genes, Genomes, Genet., 11: 268.
]Search in Google Scholar
[
Keck F., Blackman R.C., Bossart R., Brantschen J., Couton M., Hürlemann S., Kirschner D., Locher N., Zhang H., Altermatt F. (2022). Meta‐analysis shows both congruence and complementarity of DNA and eDNA metabarcoding to traditional methods for biological community assessment. Mol. Ecol., 31:1820–1835.
]Search in Google Scholar
[
Kho K.H., Sukhan Z.P., Hossen S., Cho Y., Kim S.C., Sharker M.R., Jung H.J., Nou I.S. (2021). Construction of a genetic linkage map based on SNP markers, QTL mapping, and detection of candidate genes of growth-related traits in Pacific abalone using genotyping-by-sequencing. Front. Mar. Sci., 8: 713–783.
]Search in Google Scholar
[
Kishimoto K., Washio Y., Yoshiura Y., Toyoda A., Ueno T., Fukuyama H., Kato K., Kinoshita, M. (2018). Production of a breed of red sea bream Pagrus major with an increase of skeletal muscle mass and reduced body length by genome editing with CRISPR/Cas9. Aquaculture, 495: 415–427.
]Search in Google Scholar
[
Kong S., Ke Q., Chen L., Zhou Z., Pu F., Zhao J., Bai H., Peng W., Xu, P. (2019). Constructing a high-density genetic linkage map for large yellow croaker (Larimichthys crocea) and mapping resistance trait against ciliate parasite Cryptocaryon irritans. Mar. Biotechnol., 21: 262–275.
]Search in Google Scholar
[
Konstantinidis I., Sætrom P., Brieuc S.O., Jakobsen K.S., Liedtke H., Pohlmann C., Tsoulia T., Fernandes J.M. (2023). DNA hydroxymethylation differences underlie phenotypic divergence of somatic growth in Nile tilapia reared in common garden. Epigenetics, 18: 2282323.
]Search in Google Scholar
[
Krissaane I., De Niz C., Gutiérrez-Sacristán A., Korodi G., Ede N., Kumar R., Lyons J., Manrai A., Patel C., Kohane I., Avillach P. (2020). Scalability and cost-effectiveness analysis of whole genome-wide association studies on Google Cloud Platform and Amazon Web Services. J. Ameri. Med. Infor. Ass., 27: 1425–1430.
]Search in Google Scholar
[
Kushwaha B., Pandey M., Das P., Joshi C.G., Nagpure N.S., Kumar R., Kumar D., Agarwal S., Srivastava S., Singh M., Sahoo L. (2021). The genome of walking catfish Clarias magur (Hamilton, 1822) unveils the genetic basis that may have facilitated the development of environmental and terrestrial adaptation systems in air-breathing catfishes. DNA Res., 28: 031.
]Search in Google Scholar
[
Lecomte L., Árnyasi M., Ferchaud A.L., Kent M., Lien S., Stenløkk K., Sylvestre F., Bernatchez L., Mérot C. (2024). Investigating structural variant, indel and single nucleotide polymorphism differentiation between locally adapted Atlantic salmon populations. Evol. Appl., 17: 13653.
]Search in Google Scholar
[
Levy T. Sagi A., (2020). The “IAG-switch”—A key controlling element in decapod crustacean sex differentiation. Front Endocrinol., 11: 651.
]Search in Google Scholar
[
Li C., Wang J., Song K., Meng J., Xu F., Li L., Zhang G. (2018). Construction of a high-density genetic map and fine QTL mapping for growth and nutritional traits of Crassostrea gigas. BMC Genomics, 19: 1–15.
]Search in Google Scholar
[
Li H., Yu H., Du S., Li Q. (2021). CRISPR/Cas9 Mediated High Efficiency Knockout of Myosin Essential Light Chain Gene in the Pacific Oyster (Crassostrea Gigas). Mar. Biotechnol., 23: 215–224.
]Search in Google Scholar
[
Li L., He S., Lin M.H., Zhang Y.P., Kuhl H., Liang X.F. (2023). Whole-genome resequencing and bisulfite sequencing provide new insights into the feeding habit domestication in mandarin fish (Siniperca chuatsi). Front. Genet, 13: 1088081.
]Search in Google Scholar
[
Li L., Yin X., Wan Q., Rusitanmu D., Han J. (2024). Diet Diversity of the Fluviatile Masu Salmon, Oncorhynchus masou (Brevoort 1856) Revealed via Gastrointestinal Environmental DNA Metabarcoding and Morphological Identification of Contents. Biology, 13: 129.
]Search in Google Scholar
[
Li M., Liu X., Dai S., Xiao H., Qi S., Li Y., Zheng Q., Jie M., Cheng C.H.,Wang,D. (2020). Regulation of spermatogenesis and reproductive capacity by Igf3 in tilapia. Cell. Mol.Life Sci., 77: 4921–4938.
]Search in Google Scholar
[
Li X.Y., Mei J., Ge C.T., Liu X.L., Gui J.F. (2022). Sex determination mechanisms and sex control approaches in aquaculture animals. Sci. China Life Sciences, 65: 1091–1122.
]Search in Google Scholar
[
Liang H., Wang L., Sha H., Zou G. (2019). Development and validation of sex-specific markers in Pelodiscus sinensis using restriction site-associated DNA sequencing. Genes, 10: 302.
]Search in Google Scholar
[
Liao Q., Gong G., Wang J., Xie Y., Guo W., Mei J. (2023). Identification of sex-linked codominant markers and development of a rapid LAMP-based genetic sex identification method in channel catfish (Ictalurus punctatus). Aquaculture, 572: 739556.
]Search in Google Scholar
[
Liu H., Xia W., Li B., Liu L., Wang Y., Luo Q., Ou M., Zhu X., Chen K., Zhao J. (2023). Sex-specific markers developed by 2b-RAD and genome sequencing reveal an XX/XY sex-determination system in mud carp (Cirrhinus molitorella). Aquaculture, 565: 739131.
]Search in Google Scholar
[
Liu H., Zhang H., Pan X., Xu M., Huang J., He M. (2020). A high density genetic map by whole-genome resequencing for QTL fine-mapping and dissecting candidate genes for growth or sex traits in the pearl oyster (Pinctada fucata martensii). Aquaculture, 519: 734839.
]Search in Google Scholar
[
Liu J., Peng W., Yu F., Lin W., Shen Y., Yu W., Gong S., Huang H., You W., Luo X., Ke C., (2022a). Development and validation of a 40-K multiple-SNP array for Pacific abalone (Haliotis discus hannai). Aquaculture, 558: 738393.
]Search in Google Scholar
[
Liu J., Sun H., Tang L., Wang Y., Wang Z., Mao Y., Huang H., Zhang Q. (2024). Chromosome-level genome assembly of humpback grouper using PacBio HiFi reads and Hi-C technologies. Sci. Data, 11: 51.
]Search in Google Scholar
[
Liu X., Xiao H., Jie M., Dai S., Wu X., Li M., Wang D. (2020b). Amh regulate female folliculogenesis and fertility in a dose-dependent manner through Amhr2 in Nile tilapia. Mol. Cell. Endocrinol., 499: 110593.
]Search in Google Scholar
[
Liu Z., Wang X., Ma A., Zhu L., Chang H., Sun Z. (2022b). Construction of a high-density genetic linkage map and QTL mapping of growth and cold tolerance traits in tiger puffer Takifugu rubripes. Aquaculture, 561: 738613.
]Search in Google Scholar
[
Liu Z., Zhou T., Gao D. (2022c). Genetic and epigenetic regulation of growth, reproduction, disease resistance and stress responses in aquaculture. Front. Genet., 13: 994471.
]Search in Google Scholar
[
López M.E., Linderoth T., Norris A., Lhorente J.P., Neira R., Yáñez J.M. (2019b). Multiple selection signatures in farmed Atlantic salmon adapted to different environments across hemispheres. Front. in Genet., 10: 901.
]Search in Google Scholar
[
Lu S., Zhou Q., Chen Y., Liu Y., Li Y., Wang L., Yang Y., Chen S. (2021). Development of a 38 K single nucleotide polymorphism array and application in genomic selection for resistance against Vibrio harveyi in Chinese tongue sole, Cynoglossus semilaevis. Genomics, 113: 1838–1844.
]Search in Google Scholar
[
Lv J., Sun D., Huan P., Song L., Liu P., Li J. (2018). QTL mapping and marker identification for sex-determining: indicating XY sex determination system in the swimming crab (Portunus trituberculatus). Front. Genet, 9: 337.
]Search in Google Scholar
[
Lv J., Sun D., Yan D., Ti X., Liu P., Li J. (2019). Quantitative trait loci mapping and marker identification for low salinity tolerance trait in the swimming crab (Portunus trituberculatus). Front. Genet., 10: 1193.
]Search in Google Scholar
[
Lv J., Wang Y., Ni P., Lin P., Hou H., Ding J., Chang Y., Hu J., Wang S., Bao, Z.,(2022). Development of a high-throughput SNP array for sea cucumber (Apostichopus japonicus) and its application in genomic selection with MCP regularized deep neural networks. Genomics, 114: 110426.
]Search in Google Scholar
[
Ma J., Bruce T.J., Jones E.M., Cain K.D. (2019). A review of fish vaccine development strategies: Conventional methods and modern biotechnological approaches. Microorganisms, 7: 569.
]Search in Google Scholar
[
Ma, J., Fan, Y., Zhou, Y., Liu, W., Jiang, N., Zhang, J. and Zeng, L., 2018. Efficient resistance to grass carp reovirus infection in JAM-A knockout cells using CRISPR/Cas9. Fish and Shellfish Immunology, 76, pp.206–215.
]Search in Google Scholar
[
Mandal B.K., Chen H., Si Z., Hou X., Yang H., Xu X., Wang J., Wang C. (2020). Shrunk and scattered black spots turn out due to MC1R knockout in a white-black Oujiang color common carp (Cyprinus carpio var. color). Aquaculture, 518: 734822.
]Search in Google Scholar
[
Marana M.H., Karami A.M., Ødegård J., Zuo S., Jaafar R.M., Mathiessen H., von Gersdorff Jørgensen L., Kania P.W., Dalsgaard I., Nielsen T., Buchmann, K. (2021). Whole-genome association study searching for QTL for Aeromonas salmonicida resistance in rainbow trout. Sci. Rep., 11: 17857.
]Search in Google Scholar
[
Martínez‐Burguete T., Peña‐Marin E.S., García‐Gasca A., Alvarez‐González C.A., Llera‐Herrera R. (2021). Nutrigenomic marker discovery by de novo transcriptomic sequencing during early development of the tropical gar (Atractosteus tropicus). Aquac. Res, 52: 3829–3842.
]Search in Google Scholar
[
Martinsohn J.T., Ogden R., FishPopTrace Consortium, (2009). FishPopTrace— Developing SNP-based population genetic assignment methods to investigate illegal fishing. Forensic Science International: Genet. Suppl. Ser., 2: 294–296.
]Search in Google Scholar
[
McColl‐Gausden E.F., Weeks A.R., Coleman R.A., Robinson K.L., Song S., Raadik T.A., Tingley R. (2021). Multispecies models reveal that eDNA metabarcoding is more sensitive than backpack electrofishing for conducting fish surveys in freshwater streams. Mol. Ecol., 30: 3111–3126.
]Search in Google Scholar
[
Miccoli A., Manni M., Picchietti S., Scapigliati G. (2021). State-of-the-art vaccine research for aquaculture use: The case of three economically relevant fish species. Vaccines, 9: 140.
]Search in Google Scholar
[
Modak T.H., Literman R., Puritz J.B., Johnson K.M., Roberts E.M., Proestou D., Guo X., Gomez-Chiarri M., Schwartz R.S. (2021). Extensive genome-wide duplications in the eastern oyster (Crassostrea virginica). Philos. Trans. of the R. Soc. B. 376: 20200164
]Search in Google Scholar
[
Mohd-Aris A., Muhamad-Sofie M.H.N., Zamri-Saad M., Daud H.M., Ina-Salwany M.Y. (2019). Live vaccines against bacterial fish diseases: A review. Vet. W., 12: 1806.
]Search in Google Scholar
[
Morin P.A., Alexander A., Blaxter M., Caballero S., Fedrigo O., Fontaine M., Foote A., Maloney B., McCarthy M., McGowen M.R., Mountcastle J. (2020). Building genomic infrastructure: Sequencing platinum-standard reference-quality genomes of all cetacean species. Mar. Mammal. Sci., 36: 1356–1366.
]Search in Google Scholar
[
Mu Y., Huo J., Guan Y., Fan D., Xiao X., Wei J., Li Q., Mu P., Ao J., Chen, X. (2018). An improved genome assembly for Larimichthys crocea reveals hepcidin gene expansion with diversified regulation and function. Commun. Biol., 1: 195.
]Search in Google Scholar
[
Mutlu, H., Ay, M. and Doğan, M., 2024. Food engineers’ attitudes and purchasing intentions towards genetically modified organism products. Nutri. Health, 30: 789–796.
]Search in Google Scholar
[
Nagappan S., Das P., AbdulQuadir M., Thaher M., Khan S., Mahata C., Al-Jabri H., Vatland, A.K., Kumar, G., (2021). Potential of microalgae as a sustainable feed ingredient for aquaculture. J. Biotechnol., 341: 1–20.
]Search in Google Scholar
[
Navarr‐Martín L., Mennigen J.A., Asselman J. (2023). Transcriptional Epigenetic Mechanisms in Aquatic Species. Epigenet. Aquac., 2: 45–64.
]Search in Google Scholar
[
Naya-Català F., Belenguer A., Montero D., Torrecillas S., Soriano B., Calduch-Giner J., Llorens C., Fontanillas R., Sarih S., Zamorano M.J., Izquierdo M. (2023). Broodstock nutritional programming differentially affects the hepatic transcriptome and genome-wide DNA methylome of farmed gilthead sea bream (Sparus aurata) depending on genetic background. BMC Genomics, 24: 670.
]Search in Google Scholar
[
Naya-Català F., Piazzon M.C., Torrecillas S., Toxqui-Rodríguez S., Calduch-Giner J.À., Fontanillas R., Sitjà-Bobadilla A., Montero D., Pérez-Sánchez J. (2022). Genetics and nutrition drive the gut microbiota succession and host-transcriptome interactions through the gilthead sea bream (Sparus aurata) production cycle. Biology, 11: 1744.
]Search in Google Scholar
[
Naylor R.L., Kishore A., Sumaila U.R., Issifu I., Hunter B.P., Belton B., Bush S.R., Cao L., Gelcich S., Gephart J.A., Golden C.D. (2021). Blue food demand across geographic and temporal scales. Nat. Commun., 12: 5413.
]Search in Google Scholar
[
Nelson‐Chorney H.T., Davis C.S., Poesch M.S., Vinebrooke R.D., Carli C.M., Taylor M.K. (2019). Environmental DNA in lake sediment reveals biogeography of native genetic diversity. Front. Ecol. Environ., 17: 313–318.
]Search in Google Scholar
[
Nielsen E.E., Bekkevold D., Svåsand T., Bargelloni L., Martinez P., Volckaert F., Ogden R., Martinsohn J., Carvalho G., Bernatchez L., Chavanne H. (2012). “AquaTrace” The development of tools for tracing and evaluating the genetic impact of fish from aquaculture.
]Search in Google Scholar
[
Nugent C.M., Leong J.S., Christensen K.A., Rondeau E.B., Brachmann M.K., Easton A.A., Ouellet-Fagg C.L., Crown M.T., Davidson W.S., Koop B.F., Danzmann R.G., (2019). Design and characterization of an 87k SNP genotyping array for Arctic charr (Salvelinus alpinus). PLoS One, 14: 215008.
]Search in Google Scholar
[
Ødegård J., Moen T., Santi N., Korsvoll S.A., Kjøglum S., Meuwissen T.H. (2014). Genomic prediction in an admixed population of Atlantic salmon (Salmo salar). Front. Genet., 5: 402.
]Search in Google Scholar
[
O’Leary N.A., Wright M.W., Brister J.R., Ciufo S., Haddad D., McVeigh R., Rajput B., Robbertse B., Smith-White B., Ako-Adjei D., Astashyn A. (2016). Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic acids Res., 44: 733–D745.
]Search in Google Scholar
[
Omeka W.K.M., Liyanage D.S., Lee S., Lim C., Yang H., Sandamalika W.G., Udayantha H.M.V., Kim G., Ganeshalingam S., Jeong T., Oh S.R., (2022). Genome-wide association study (GWAS) of growth traits in olive flounder (Paralichthys olivaceus). Aquaculture, 555: 738257.
]Search in Google Scholar
[
Osmond A.T., Arts M.T., Bazinet R.P., Napier J.A., Han L., Colombo S.M. (2021). Transgenic camelina oil is an effective source of eicosapentaenoic acid and docosahexaenoic acid in diets for farmed rainbow trout, in terms of growth, tissue fatty acid content, and fillet sensory properties. J. World Aquacult. Soc., 52: 961–986.
]Search in Google Scholar
[
Otsuki Y., Okuda Y., Naruse K., Saya H. (2020). Identification of kit-ligand a as the Gene Responsible for the Medaka Pigment Cell Mutant few melanophore. G3: Genes Genomes Genet., 10: 311–319.
]Search in Google Scholar
[
Ott B.D., Hulse-Kemp A.M., Duke M.V., Griffin M.J., Peterson B.C., Scheffler B.E., Torrans E.L., Allen P.J. (2024). Hypothalamic transcriptome response to simulated diel earthen pond hypoxia cycles in channel catfish (Ictalurus punctatus). Physiol. Genomics, 56: 519–530.
]Search in Google Scholar
[
Özcan Gökçek E., Işık R., Karahan B., Gamsız K. (2023). Characterisation of Single Nucleotide Polymorphisms and Haplotypes of MSTN Associated with Growth Traits in European Sea Bass (Dicentrarchus labrax). Mar. Biotechnol., 1–11.
]Search in Google Scholar
[
Palaiokostas C., Robledo D., Vesely T., Prchal M., Pokorova D., Piackova V., Pojezdal L., Kocour M., Houston R.D. (2018). Mapping and sequencing of a significant quantitative trait locus affecting resistance to koi herpesvirus in common carp. G3: Genes Genomes Genet., 8: 3507–3513.
]Search in Google Scholar
[
Peng M., Chen X., Yang C., Liu Q., Li Q., Zhang B., Wang H., Zhu W., Feng P., Zeng D., Zhao Y. (2023). A high-quality genome assembly of the Pacific white shrimp (Litopenaeus vannamei) provides insights into its evolution and adaptation. Aquac. Rep., 33: 101859.
]Search in Google Scholar
[
Priya T.J., Kappalli S. (2022). Modern biotechnological strategies for vaccine development in aquaculture–prospects and challenges. Vaccine, 40: 5873–5881.
]Search in Google Scholar
[
Podgorniak T., Dhanasiri A., Chen X., Ren X., Kuan P.F., Fernandes J. (2022). Early fish domestication affects methylation of key genes involved in the rapid onset of the farmed phenotype. Epigenetics, 17: 1281–1298.
]Search in Google Scholar
[
Proestou D.A., Sullivan M.E., Lundgren K.M., Ben-Horin T., Witkop E.M., Hart K.M. (2023). Understanding Crassostrea virginica tolerance of Perkinsus marinus through global gene expression analysis. Front. Genet., 14: 1054558.
]Search in Google Scholar
[
Puthumana J., Chandrababu A., Sarasan M., Joseph V., Singh I.B. (2024). Genetic improvement in edible fish: status, constraints, and prospects on CRISPR-based genome engineering. 3 Biotech, 14: 44.
]Search in Google Scholar
[
Qian Q., Zhou Y., Chen Z., Zhu Y., Xu J., Gao X., Jiang Q., Wang J., Zhang X. (2023). Pathogenesis and complete genome sequence of Decapod iridescent virus 1 (DIV1) associated with mass mortality in Macrobrachium rosenbergii. Aquaculture, 566: 739220.
]Search in Google Scholar
[
Qin G., Qin Z., Lu C., Ye Z., Elaswad A., Bangs M., Li H., Zhang Y., Huang Y., Shi H., Gosh K. (2022). Gene editing of the catfish gonadotropin-releasing hormone gene and hormone therapy to control the reproduction in channel catfish, Ictalurus punctatus. Biology, 11: 649.
]Search in Google Scholar
[
Rajab S.A., Andersen L.K., Kenter L.W., Berlinsky D.L., Borski R.J., McGinty A.S., Ashwell C.M., Ferket P.R., Daniels H.V., Reading B.J. (2024). Combinatorial metabolomic and transcriptomic analysis of muscle growth in hybrid striped bass (female white bass Morone chrysops x male striped bass (M. saxatilis). BMC Genomics, 25: 580.
]Search in Google Scholar
[
Rana K.M.S., Ahammad K., Salam M.A. (2020). Bioinformatics: scope and challenges in aquaculture research of Bangladesh-a review. Inter. J. Agric. Res. Innov.Techno., 10: 137–145.
]Search in Google Scholar
[
Rasmussen J.A., Villumsen K.R., Ernst M., Hansen M., Forberg T., Gopalakrishnan S., Gilbert M.T.P., Bojesen A.M., Kristiansen K., Limborg M.T. (2022). A multi-omics approach unravels metagenomic and metabolic alterations of a probiotic and synbiotic additive in rainbow trout (Oncorhynchus mykiss). Microbiome, 10: 1–19.
]Search in Google Scholar
[
Raudstein M., Kjærner-Semb E., Barvik M., Broll S., Straume A.H., Edvardsen R.B. (2023). In vivo CRISPR/LbCas12a-mediated knock-in and knock-out in Atlantic salmon (Salmo salar L.). Transgen. Res., 32: 513–521.
]Search in Google Scholar
[
Ren Y., Tian Y., Mao X., Wen H., Qi X., Li J., Li J., Li Y. (2022). Acute hypoxia changes the gene expression profiles and alternative splicing landscape in gills of spotted sea bass (Lateolabrax maculatus). Front. Mar. Sci. 9: 1024218.
]Search in Google Scholar
[
Robinson N.A., Robledo D., Sveen L., Daniels R.R., Krasnov A., Coates A., Jin Y.H., Barrett L.T., Lillehammer M., Kettunen A.H., Phillips B.L. (2023). Applying genetic technologies to combat infectious diseases in aquaculture. Rev. Aquac., 15: 491–535.
]Search in Google Scholar
[
Robledo D., Matika O., Hamilton A., Houston R.D. (2018a). Genome-wide association and genomic selection for resistance to amoebic gill disease in Atlantic salmon. G3: Genes Genomes Genet., 8: 1195–1203.
]Search in Google Scholar
[
Robledo D., Palaiokostas C., Bargelloni L., Martínez P., Houston R. (2018b). Applications of genotyping by sequencing in aquaculture breeding and genetics. Rev. Aquac., 10: 670–682.
]Search in Google Scholar
[
Rondeau E.B., Christensen K.A., Johnson H.A., Sakhrani D., Biagi C.A., Wetklo M., Despins C.A., Leggatt R.A., Minkley D.R. Withler R.E., Beacham T.D. (2023). Insights from a chum salmon (Oncorhynchus keta) genome assembly regarding whole-genome duplication and nucleotide variation influencing gene function. G3: Genes Genomes Genet., 13: 127.
]Search in Google Scholar
[
Roy S., Kumar V., Behera B.K. Das B.K., (2022). Epigenetics: perspectives and potential in aquaculture. In Advan. Fisher. Biotechnol., 10: 133–150.
]Search in Google Scholar
[
Sáez-Arteaga A., Wu Y., Silva-Marrero J.I., Rashidpour A., Almajano M.P., Fernández F., Baanante I.V., Metón I. (2022). Gene markers of dietary macronutrient composition and growth in the skeletal muscle of gilthead sea bream (Sparus aurata). Aquaculture, 555: 738221.
]Search in Google Scholar
[
Sagi A, Aflalo ED (2005) The androgenic gland and monosex culture of freshwater prawn Macrobrachium rosenbergii (De Man): a biotechnological perspective. Aquac. Res., 36: 231–237
]Search in Google Scholar
[
Sahoo L., Das P., Sahoo B., Das G., Meher P.K., Udit U.K., Mahapatra K.D., Sundaray J.K. (2020). The draft genome of Labeo catla. BMC Res. Notes, 13: 1–3.
]Search in Google Scholar
[
Salem M., Al-Tobasei R., Ali A., Lourenco D., Gao G., Palti Y., Kenney B., Leeds T.D. (2018). Genome-wide association analysis with a 50K transcribed gene SNP-chip identifies QTL affecting muscle yield in rainbow trout. Front. Genet., 9: 87.
]Search in Google Scholar
[
Salgueiro V., Manageiro V., Rosado T., Bandarra N.M., Botelho M.J., Dias E., Caniça M. (2023). Snapshot of resistome, virulome and mobilome in aquaculture. Sci. Total Environ., 905: 66351.
]Search in Google Scholar
[
Santos K.O., Costa-Filho J., Spagnol K.L., Nornberg B.F., Lopes F.M., Tesser M.B., Marins L.F. (2020). The inclusion of a transgenic probiotic expressing recombinant phytase in a diet with a high content of vegetable matter markedly improves growth performance and the expression of growth-related genes and other selected genes in zebrafish. Aquaculture, 519: 734878.
]Search in Google Scholar
[
Sato Y., Miya M., Fukunaga T., Sado T., Iwasaki W. (2018). MitoFish and MiFish pipeline: a mitochondrial genome database of fish with an analysis pipeline for environmental DNA metabarcoding. Mol. Biol. Evol., 35: 1553–1555.
]Search in Google Scholar
[
Savaya A., De Leo G., Aalto E., Levy T., Rosen O., Manor R., Aflalo E.D., Tricarico E., Sagi A. (2020). The IAG gene in the invasive crayfish Procambarus clarkii-towards sex manipulations for biocontrol and aquaculture. Manag. Biologic. Inva. 11: 2.
]Search in Google Scholar
[
Sciuto S., Colli L., Fabris A., Pastorino P., Stoppani N., Esposito G., Prearo M., Esposito G., Ajmone-Marsan P., Acutis P.L., Colussi S. (2022). What can genetics do for the control of infectious diseases in aquaculture?. Anim., 12: 2176.
]Search in Google Scholar
[
Shi H., Zhou T., Wang X., Yang Y., Wu C., Liu S., Bao L., Li N., Yuan Z., Jin Y., Tan S. (2018). Genome-wide association analysis of intra-specific QTL associated with the resistance for enteric septicemia of catfish. Mol. Genet. Genomics, 293: 1365–1378.
]Search in Google Scholar
[
Shum P., Wäge-Recchioni J., Sellers G.S., Johnson M.L., Joyce D.A. (2023). DNA metabarcoding reveals the dietary profiles of a benthic marine crustacean, Nephrops norvegicus. Plos One, 18: 0289221.
]Search in Google Scholar
[
Sinclair-Waters M., Ødegård J., Korsvoll S.A., Moen T., Lien S., Primmer C.R., Barson N.J. (2020). Beyond large-effect loci: large-scale GWAS reveals a mixed large-effect and polygenic architecture for age at maturity of Atlantic salmon. Genet. Select. Evol., 52:1–11.
]Search in Google Scholar
[
Song H., Hu H. (2022). Strategies to improve accuracy and reduce costs of genomic prediction in aquaculture species. Evol. Appl., 15: 578–590.
]Search in Google Scholar
[
Straume A.H., Kjærner-Semb E., Ove Skaftnesmo K., Güralp H., Kleppe L., Wargelius A., Edvardsen R.B. (2020). Indel locations are determined by template polarity in highly efficient in vivo CRISPR/Cas9-mediated HDR in Atlantic salmon. Sci. Rep., 10: 409.
]Search in Google Scholar
[
Sun S., Li W., Xiao S., Lin A., Han Z., Cai M., Wang Z. (2018). Genetic sex identification and the potential sex determination system in the yellow drum (Nibea albiflora). Aquaculture, 492: 253–258.
]Search in Google Scholar
[
Sun Y., Huang Y., Li X., Baldwin C.C., Zhou Z., Yan Z., Crandall K.A., Zhang Y., Zhao X., Wang M., Wong A. (2016). Fish-T1K (Transcriptomes of 1,000 Fishes) Project: large-scale transcriptome data for fish evolution studies. GigaScience, 5: 13742–016.
]Search in Google Scholar
[
Sun Y., Yan C., Liu M., Liu Y., Wang W., Cheng W., Yang F., Zhang J. (2020). CRISPR/Cas9-mediated deletion of one carotenoid isomerooxygenase gene (EcNinaB-X1) from Exopalaemon carinicauda. Fish Shellfish Immunol., 97: 421–431.
]Search in Google Scholar
[
Taengchaiyaphum S., Srisala J., Wongkhaluang P., Sukthaworn S., Macias J., Udin I.I., Chokkara M.B., Athikkavil M.M., Alday-Sanz V., Flegel T.W., Sritunyalucksana K. (2024). White spot syndrome virus endogenous viral elements (EVE) revealed by circular viral copy DNA (cvcDNA) in shrimp. Aquac. Rep., 35: 102003.
]Search in Google Scholar
[
Tan K., Zhou M., Jiang H., Jiang D., Li Y., Wang W. (2020). siRNA-mediated MrIAG silencing induces sex reversal in Macrobrachium rosenbergii. Mar. Biotechnol., 22: 456–466.
]Search in Google Scholar
[
Tan S., Zhou T., Wang W., Jin Y., Wang X., Geng X., Luo J., Yuan Z., Yang Y., Shi,H., Gao D. (2018). GWAS analysis using interspecific backcross progenies reveals superior blue catfish alleles responsible for strong resistance against enteric septicemia of catfish. Mol. Genet. Genomics, 293: 1107–1120.
]Search in Google Scholar
[
Tang B., Zhang D., Li H., Jiang S., Zhang H., Xuan F., Ge B., Wang Z., Liu Y., Sha Z., Cheng Y. (2020). Chromosome-level genome assembly reveals the unique genome evolution of the swimming crab (Portunus trituberculatus). GigaScience, 9: 161.
]Search in Google Scholar
[
Tao W., Xu L., Zhao L., Zhu Z., Wu X., Min Q., Wang D., Zhou Q. (2021). High‐ quality chromosome‐level genomes of two tilapia species reveal their evolution of repeat sequences and sex chromosomes. Mol. Ecol. Resour., 21: 543–560.
]Search in Google Scholar
[
Taş N., de Jong A.E., Li Y., Trubl G., Xue Y., Dove N.C. (2021). Metagenomic tools in microbial ecology research. Curr.Opin. Biotechnol., 67: 184–191.
]Search in Google Scholar
[
Tekedar H.C., Kumru S., Blom J., Perkins A.D., Griffin M.J., Abdelhamed H., Karsi A., Lawrence M.L. (2019). Comparative genomics of Aeromonas veronii: Identification of a pathotype impacting aquaculture globally. PloS One, 14: 0221018.
]Search in Google Scholar
[
Thai B.T., Lee Y.P., Gan H.M., Austin C.M., Croft L.J., Trieu T.A., Tan M.H. (2019). Whole genome assembly of the snout otter clam, Lutraria rhynchaena, using Nanopore and Illumina data, benchmarked against bivalve genome assemblies. Front. Genet., 10: 1158.
]Search in Google Scholar
[
Tian H.F., Hu Q.M., Li, Z., (2021). A high-quality de novo genome assembly of one swamp eel (Monopterus albus) strain with PacBio and Hi-C sequencing data. G3; Genes, Genomes, Genet., 11: 032.
]Search in Google Scholar
[
Tigano A., Russello M.A. (2022). The genomic basis of reproductive and migratory behaviour in a polymorphic salmonid. Mol. Ecol., 31: 6588–6604.
]Search in Google Scholar
[
Tørresen O.K., Star B., Jentoft S., Jakobsen K.S., Nederbragt A.J. (2016). The new era of genome sequencing using high-throughput sequencing technology: generation of the first version of the Atlantic cod genome. In Genomics in Aquaculture (1-20). Academic Press.
]Search in Google Scholar
[
Tsairidou S., Hamilton A., Robledo D., Bron J.E., Houston R.D. (2020). Optimizing low-cost genotyping and imputation strategies for genomic selection in Atlantic salmon. G3: Genes Genomes Genet., 10: 581–590.
]Search in Google Scholar
[
Tshilate T.S., Ishengoma E., Rhode C. (2024). Construction of a high‐density linkage map and QTL detection for growth traits in South African abalone (Haliotis midae). Anim. Genet., 55:744–760.
]Search in Google Scholar
[
Tully B.J., Graham E.D., Heidelberg J.F. (2018). The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci. Data, 5: 1–8.
]Search in Google Scholar
[
Uengwetwanit T., Pootakham W., Nookaew I., Sonthirod C., Angthong P., Sittikankaew K., Rungrassamee W., Arayamethakorn S., Wongsurawat T., Jenjaroenpun P., Sangsrakru D., (2021). A chromosome‐level assembly of the black tiger shrimp (Penaeus monodon) genome facilitates the identification of growth‐associated genes. Molecular Ecol. Resour., 21: 1620–1640.
]Search in Google Scholar
[
Vallejo R.L., Cheng H., Fragomeni B.O., Shewbridge K.L., Gao G., MacMillan J.R., Towner R., Palti Y. (2019). Genome-wide association analysis and accuracy of genome-enabled breeding value predictions for resistance to infectious hematopoietic necrosis virus in a commercial rainbow trout breeding population. Genet. Select. Evol., 51: 1–14.
]Search in Google Scholar
[
Vendrami D.L., Houston R.D., Gharbi K., Telesca L., Gutierrez A.P., Gurney‐Smith H., Hasegawa N., Boudry P., Hoffman J.I. (2019). Detailed insights into pan‐ European population structure and inbreeding in wild and hatchery Pacific oysters (Crassostrea gigas) revealed by genome‐wide SNP data. Evol. Appl., 12: 519–534.
]Search in Google Scholar
[
Van Eenennaam A.L., De Figueiredo Silva F., Trott J.F., Zilberman D. (2021). Genetic engineering of livestock: the opportunity cost of regulatory delay. Annu. Rev. Anim. Biosci., 9: 453–478.
]Search in Google Scholar
[
Vu N.T., Zenger K.R., Silva C.N., Guppy J.L., Jerry D.R. (2021). Population structure, genetic connectivity, and signatures of local adaptation of the Giant Black tiger shrimp (Penaeus monodon) throughout the Indo-Pacific region. Genome Biol. Evol., 13:214.
]Search in Google Scholar
[
Waiho K., Shi X., Fazhan H., Li S., Zhang Y., Zheng H., Liu W., Fang S., Ikhwanuddin M., Ma H. (2019). High-density genetic linkage maps provide novel insights into ZW/ZZ sex determination system and growth performance in mud crab (Scylla paramamosain). Front. Genet., 10: 298.
]Search in Google Scholar
[
Wang D., Chen X., Zhang X., Li J., Yi Y., Bian C., Shi Q., Lin H., Li S., Zhang Y., You X. (2019a). Whole genome sequencing of the giant grouper (Epinephelus lanceolatus) and high-throughput screening of putative antimicrobial peptide genes. Mar. Drugs, 17: 503.
]Search in Google Scholar
[
Wang F., Qin Z., Li Z., Yang S., Gao T., Sun L., Wang D. (2021). Dnmt3aa but Not Dnmt3ab Is Required for Maintenance of Gametogenesis in Nile Tilapia (Oreochromis niloticus). Int. J. Mol. Sci., 22: 10170.
]Search in Google Scholar
[
Wang H.P., Shen Z.G. (2023a). The Potential Role of Epigenetics in Aquaculture: Insights from Different Taxa to Diverse Teleosts. Epigenet. Aquac., 1–43.
]Search in Google Scholar
[
Wang J., Cheng Y., Su B., Dunham R.A., (2025). Genome Manipulation Advances in Selected Aquaculture Organisms. Rev. Aquac., 17: 12988.
]Search in Google Scholar
[
Wang J., Lv J., Shi M., Ge Q., Wang Q., He Y., Li J., Li J. (2024a). Chromosome-level genome assembly of ridgetail white shrimp Exopalaemon carinicauda. Sci. Data, 11: 576.
]Search in Google Scholar
[
Wang J., Miao L., Chen B., Zhao J., Ke Q., Pu F., Zhou T., Xu P. 2023b). Development and evaluation of liquid SNP array for large yellow croaker (Larimichthys crocea). Aquaculture, 563: 739021.
]Search in Google Scholar
[
Wang J., Su B., Al-Armanazi J., Wise A.L., Shang M., Bern L., Li S., Xing D., Johnson, A., Wang, W., Hettiarachchi, D.U., (2023c). Integration of alligator cathelicidin gene via two CRISPR/Cas9-assisted systems enhances bacterial resistance in blue catfish, Ictalurus furcatus. Aquaculture, 576: 739860.
]Search in Google Scholar
[
Wang J., Su B., Bruce T.J., Wise A.L., Zeng P., Cao G., Simora R.M.C., Bern L., Shang M., Li S., Xing D. (2023d). CRISPR/Cas9 microinjection of transgenic embryos enhances the dual-gene integration efficiency of antimicrobial peptide genes for bacterial resistance in channel catfish, Ictalurus punctatus. Aquaculture, 575: 739725.
]Search in Google Scholar
[
Wang J., Su B., Xing D., Bruce T.J., Li S., Bern L., Shang M., Johnson A., Simora R.M.C., Coogan M., Hettiarachchi D.U. (2024b). Generation of Eco-Friendly and Disease-Resistant Channel Catfish (Ictalurus punctatus) Harboring the Alligator Cathelicidin Gene via CRISPR/Cas9 Engineering. Engineering. 39: 273–286
]Search in Google Scholar
[
Wang J., Torres I.M., Shang M., Al-Armanazi J., Dilawar H., Hettiarachchi D.U., Paladines-Parrales A., Chambers B., Pottle K., Soman M., Su B. (2024c). One-step knock-in of two antimicrobial peptide transgenes at multiple loci of catfish by CRISPR/Cas9-mediated multiplex genome engineering. Int. J. Biol. Macromol., 260: 129384.
]Search in Google Scholar
[
Wang L., Li Z., Liu Y., Chen S., Li L., Duan P., Wang X., Li W., Wang Q., Zhai J., Tian Y., (2022a). A chromosome-level genome assembly of the potato grouper (Epinephelus tukula). Genomics, 114: 110473.
]Search in Google Scholar
[
Wang L., Zhang L., Chen Y., Chen J., Zhang M., Yu M., Jiang H., Qiao Z., Li X. (2022b). Mapping Growth-Related Quantitative Trait Locus (QTL) in Commercial Yellow River Carp (Cyprinus carpio haematopterus) during Overwintering. Fishes, 7: 166.
]Search in Google Scholar
[
Wang Q., Ren X., Liu P., Li J., Lv J., Wang J., Zhang H., Wei W., Zhou Y., He Y., Li J. (2022c). Improved genome assembly of Chinese shrimp (Fenneropenaeus chinensis) suggests adaptation to the environment during evolution and domestication. Mol. Ecol. Resour., 22: 334–344.
]Search in Google Scholar
[
Wang X., Xu W., Wei L., Zhu C., He C., Song H., Cai Z., Yu W., Jiang Q., Li L., Wang K. (2019b). Nanopore sequencing and de novo assembly of a black-shelled Pacific oyster (Crassostrea gigas) genome. Front. Genet., 10: 1211.
]Search in Google Scholar
[
Wang Y., Zhang H., Xian W., Iwasaki W. (2023e). Chromosome genome assembly and annotation of the spiny red gurnard (Chelidonichthys spinosus). Scientific Data, 10: 443.
]Search in Google Scholar
[
Wei W.Y., Gong Y., Guo X.F., Liu M., Zhou Y.L., Li Z., Zhou L., Wang Z.W., Gui J.F. (2023). Gonadal transcriptomes reveal sex-biased expression genes associated with sex determination and differentiation in red-tail catfish (Hemibagrus wyckioides). BMC Genomics, 24: 1–14.
]Search in Google Scholar
[
Wellband K., Mérot C., Linnansaari T., Elliott J.A.K., Curry R.A., Bernatchez L. (2019). Chromosomal fusion and life history‐associated genomic variation contribute to within‐river local adaptation of Atlantic salmon. Mol.Ecol., 28: 1439–1459.
]Search in Google Scholar
[
Wong L.L., Razali S.A., Deris Z.M., Danish-Daniel M., Tan M.P., Nor S.A.M., Ma H., Min W., Yantao L., Asaduzzaman M., Sung Y.Y. (2022). Application of second-generation sequencing (SGS) and third generation sequencing (TGS) in aquaculture breeding program. Aquaculture, 548: 737633.
]Search in Google Scholar
[
Wu Q., Miao G., Li X., Liu W., Ikhwanuddin M., Ma H.(2018). De novo assembly of genome and development of polymorphic microsatellite loci in the blue swimming crab (Portunus pelagicus) using RAD approach. Mol. Biol. Rep., 45: 1913–1918.
]Search in Google Scholar
[
Wu X., Zhao L., Fan Z., Lu B., Chen J., Tan D., Jiang D., Tao W., Wang D. (2021). Screening and characterization of sex-linked DNA markers and marker-assisted selection in blue tilapia (Oreochromis aureus). Aquaculture, 530, p.735934.
]Search in Google Scholar
[
Wu Y., Wu T., Yang L., Su Y., Zhao C., Li L., Cai J., Dai X., Wang D., Zhou L. (2023). Generation of fast growth Nile tilapia (Oreochromis niloticus) by myostatin gene mutation. Aquaculture, 562: 738762.
]Search in Google Scholar
[
Xiao J., Zou Y., Xiao S., Chen J., Wang Z., Wang Y., Jie X., Cai M. (2020). Development of a PCR-based genetic sex identification method in spinyhead croaker (Collichthys lucidus). Aquaculture, 522: 735130.
]Search in Google Scholar
[
Xu C., Lv Z., Shen Y., Liu D., Fu Y., Zhou L., Liu W., Chen K., Ye H., Xia X., Xia J. (2020a). Metagenomic insights into differences in environmental resistome profiles between integrated and monoculture aquaculture farms in China. Environ. Int., 144: 106005.
]Search in Google Scholar
[
Xu G., Bian C., Nie Z., Li J., Wang Y., Xu D., You X., Liu H., Gao J., Li H., Liu K. (2020b). Genome and population sequencing of a chromosome-level genome assembly of the Chinese tapertail anchovy (Coilia nasus) provides novel insights into migratory adaptation. GigaScience, 9: 157.
]Search in Google Scholar
[
Xu H.J., Ma W.M. (2022). Full functional sex reversal achieved through silencing of MroDmrt11E gene in Macrobrachium rosenbergii: Production of all-male monosex freshwater prawn. Front. Endocrinol., 12: 772498.
]Search in Google Scholar
[
Xuereb A., Nahuelpi R.M., Normandeau E., Babin C., Laporte M., Mallet A., Yáñez J.M., Mallet M., Bernatchez L. (2023). Design and validation of a high-density single nucleotide polymorphism array for the Eastern oyster (Crassostrea virginica). G3: Genes Genomes Genet., 13: 071.
]Search in Google Scholar
[
Yan L., Feng H., Wang F., Lu B., Liu X., Sun L., Wang D. (2019). Establishment of three estrogen receptors (esr1, esr2a, esr2b) knockout lines for functional study in Nile tilapia. J. Steroid Biochem. Mol. Biol., 191: 105379.
]Search in Google Scholar
[
Yan M., Li B., Wang J., Bai Y., Ke Q., Zhou T., Xu P. (2022). Disruption of mstn Gene by CRISPR/Cas9 in large yellow croaker (Larimichthys crocea). Mar. Biotechnol., 24: 681–689.
]Search in Google Scholar
[
Yáñez J.M., Barria A., Lopez M.E., Moen T., Garcia B.F., Yoshida G.M., Xu P. (2023). Genome‐wide association and genomic selection in aquaculture. Rev. Aquac., 15: 645–675.
]Search in Google Scholar
[
Yáñez J.M., Yoshida G., Barria A., Palma-Véjares R., Travisany D., Díaz D., Cáceres G., Cádiz M.I., López M.E., Lhorente J.P., Jedlicki A. (2020). High-throughput single nucleotide polymorphism (SNP) discovery and validation through whole-genome resequencing in Nile tilapia (Oreochromis niloticus). Mar. Biotechnol., 22: 109–117.
]Search in Google Scholar
[
Yang C., Huang R., Ou M., Gui B., Zhao J., He L., Li Y., Liao L., Chen K., Wang Y. (2020a). A rapid method of sex-specific marker discovery based on NGS and determination of the XX/XY sex-determination system in Channa maculata. Aquaculture, 528: 735499.
]Search in Google Scholar
[
Yang J.L., Feng D.D., Liu J., Xu J.K., Chen K., Li Y.F., Zhu Y.T., Liang X., Lu Y. (2021). Chromosome-level genome assembly of the hard-shelled mussel Mytilus coruscus, a widely distributed species from the temperate areas of East Asia. GigaScience, 10: 024.
]Search in Google Scholar
[
Yang L., Li Y., Wu Y., Sun S., Song Q., Wei J., Sun L., Li M., Wang D., Zhou L. (2020b). Rln3a is a prerequisite for spermatogenesis and fertility in male fish. J. Steroid Biochem. Mol. Biol., 197: 105517.
]Search in Google Scholar
[
Yang L., Xu Z., Zeng H., Sun N., Wu B., Wang C., Bo J., Li L., Dong Y., He S. (2020c). FishDB: an integrated functional genomics database for fishes. BMC Genomics, 21: 1–5.
]Search in Google Scholar
[
Yang M., Wang Q., Wang S., Wang Y., Zeng Q., Qin Q. (2019). Transcriptomics analysis reveals candidate genes and pathways for susceptibility or resistance to Singapore grouper iridovirus in orange-spotted grouper (Epinephelus coioides). Dev. Comp. Immunol., 90: 70–79.
]Search in Google Scholar
[
Yang X., Song Y., Zhang R., Yu M., Guo X., Guo H., Du X., Sun S., Li C., Mao X., Fan G. (2023a). Unravelling the genomic features, phylogeny and genetic basis of tooth ontogenesis in Characiformes through analysis of four genomes. DNA Res., 30: 022.
]Search in Google Scholar
[
Yang Z., Wong J., Wang L., Sun F., Yue G.H. (2023b). pomc knockout increases growth in zebrafish. Aquaculture, 574: 739707.
]Search in Google Scholar
[
Ye S., Zhou X., Ouyang M., Cui W., Xiang Z., Zhang Y., Yuan Y., Ikhwanuddin M., Li S., Zheng H., Zhang Y. (2024). Development and validation of a 40 K liquid SNP array for the mud crab (Scylla paramamosain). Aquaculture, 594: 741394.
]Search in Google Scholar
[
Yoshida G.M., Carvalheiro R., Rodríguez F.H., Lhorente J.P., Yáñez J.M. (2019). Single-step genomic evaluation improves accuracy of breeding value predictions for resistance to infectious pancreatic necrosis virus in rainbow trout. Genomics, 111: 127–132.
]Search in Google Scholar
[
Yoshida G.M., Carvalheiro R., Lhorente J.P., Correa K., Figueroa R., Houston R.D., Yáñez J.M. (2018). Accuracy of genotype imputation and genomic predictions in a two-generation farmed Atlantic salmon population using high-density and low-density SNP panels. Aquaculture, 491: 147–154.
]Search in Google Scholar
[
Yoshikawa H., Ino Y., Kishimoto K., Kinoshita M., Yoshiura Y. (2024). Efficient production of donor-derived tiger puffer gametes from grass puffer recipient with germ cell deficiency by CRISPR-Cas9 mediated knockout of dead end 1. Aquaculture, 595: 741626.
]Search in Google Scholar
[
Yu H., Li H., Li Q., Xu R., Yue C., Du S. (2019). Targeted gene disruption in Pacific oyster based on CRISPR/Cas9 ribonucleoprotein complexes. Mar. Biotechnol., 21: 301–309.
]Search in Google Scholar
[
Zhai G., Shu T., Chen K., Lou Q., Jia J., Huang J., Shi C., Jin X., He J., Jiang D., Qian X. (2022). Successful production of an all-female common carp (Cyprinus carpio L.) population using cyp17a1-deficient neomale carp. Engineering, 8: 181–189.
]Search in Google Scholar
[
Zhang B., Zhao N., Liu Y., Jia L., Fu Y., He X., Liu K., Xu Z., Bao B. (2019a). Novel molecular markers for high-throughput sex characterization of Cynoglossus semilaevis. Aquaculture, 513: 734331.
]Search in Google Scholar
[
Zhang B., Zhao N., Peng K., He X., Chen C.X., Liu H., Liu K., Jia L., Bao B. (2020a). A combination of genome-wide association study screening and SNaPshot for detecting sex-related SNPs and genes in Cynoglossus semilaevis. Comparative Biochemistry and Physiology Part D: Genomics Proteomics, 35: 100711.
]Search in Google Scholar
[
Zhang S., Zhang X., Chen X., Xu T., Wang M., Qin Q., Zhong L., Jiang H., Zhu X., Liu H., Shao J. (2019b). Construction of a high-density linkage map and QTL fine mapping for growth-and sex-related traits in channel catfish (Ictalurus punctatus). Front. Genet., 10: 251.
]Search in Google Scholar
[
Zhang S., Zheng Y., Zhan A., Dong C., Zhao J., Yao M. (2022a). Environmental DNA captures native and non-native fish community variations across the lentic and lotic systems of a megacity. Sci. Advances, 8: 97.
]Search in Google Scholar
[
Zhang X., Luan P., Cao D., Hu G. (2021). A High-Density Genetic Linkage Map and Fine Mapping of QTL For Feed Conversion Efficiency in Common Carp (Cyprinus carpio). Front. Genet., 12: 778487.
]Search in Google Scholar
[
Zhang X., Wang F., Dong Z., Dong X., Chi J., Chen H., Zhao Q., Li K. (2020b). A new strain of yellow catfish carrying genome edited myostatin alleles exhibits double muscling phenotype with hyperplasia. Aquaculture, 523: 735187.
]Search in Google Scholar
[
Zhang Y., Li J., Chu P., Shang R., Yin S., Wang T. (2023). Construction of a high-density genetic linkage map and QTL mapping of growth and cold tolerance traits in Takifugu fasciatus. BMC Genomics, 4: 645.
]Search in Google Scholar
[
Zhao H., Fang D.A., Wang Y., Zhang M., Wang A., Xu Y., Xu D. (2024). A high-quality chromosome-level genome assembly of the topmouth culter (Culter alburnus Basilewsky, 1855). Sci. Data, 11: 910.
]Search in Google Scholar
[
Zheng J., Jiang J., Rui Q., Li F., Liu S., Cheng S., Chi M., Jiang W. (2024a). Chromosome-level genome assembly of Acrossocheilus fasciatus using PacBio sequencing and Hi-C technology. Scientific Data, 11: 166.
]Search in Google Scholar
[
Zheng J., Yan Y., Li Z., Song N. (2022a). Genetic structure of the small yellow croaker (Larimichthys polyactis) across the Yellow Sea and the East China Sea by microsatellite DNA variation: implications for the division of management units. PeerJ, 10: 13789.
]Search in Google Scholar
[
Zheng Q., Xiao H., Shi H., Wang T., Sun L., Tao W., Kocher T.D., Li M., Wang D. (2020a). Loss of Cyp11c1 causes delayed spermatogenesis due to the absence of 11-ketotestosterone. J. Endocrinol., 244: 487–499.
]Search in Google Scholar
[
Zheng S., Tao W., Yang H., Kocher T.D., Wang Z., Peng Z., Jin L., Pu D., Zhang Y., Wang D. (2022b). Identification of sex chromosome and sex-determining gene of southern catfish (Silurus meridionalis) based on XX, XY and YY genome sequencing. Proc. R. Soc. B, 289: 20212645.
]Search in Google Scholar
[
Zheng Y., Guo G., Lv Y., Gao Q., Zhou D., Zhang L., Tu G., Weng S., Li C., He J., Wang M. (2024b). A Chromosome-level genome assembly of giant river prawn (Macrobrachium rosenbergii). Sci. Data, 11: 935.
]Search in Google Scholar
[
Zheng Y.Y., Zhang C., Li Y., Zhang P.Q., Chen G., Wang G.X., Zhu B. (2021). Immersion immunization of common carp with bacterial ghost‐based DNA vaccine inducing prophylactic protective immunity against spring viraemia of carp virus. J. Fish Dis., 44: 2021–2029.
]Search in Google Scholar
[
Zhou Q., Chen Y.D., Lu S., Liu Y., Xu W.T., Li Y.Z., Wang L., Wang N., Yang Y.M., Chen S.L. (2021). Development of a 50K SNP array for Japanese flounder and its application in genomic selection for disease resistance. Engineering, 7: 406–411.
]Search in Google Scholar
[
Zhou T., Chen B., Ke Q., Zhao J., Pu F., Wu Y., Chen L., Zhou Z., Bai Y., Pan Y., Gong J. (2020). Development and evaluation of a high-throughput single-nucleotide polymorphism array for large yellow croaker (Larimichthys crocea). Front. Genet., 11: 571751.
]Search in Google Scholar
[
Zhou T., Chen B.H., Ke Q.Z. (2022). Development and evaluation of a breeding array for genomic selection of large yellow croaker (Larmichthys crocea). J. Fish Sci. China, 29: 41–48.
]Search in Google Scholar