[
Adeigbe O., Olasupo F., Adewale D., Abimbola, M. (2015). A review on cashew research and production in Nigeria in the last four decades. Sci. Res. Essays, 10: 196-209.
]Search in Google Scholar
[
Adou M., Adjouman D., Kouadio O., Tetchi A., Amani, N.G. (2021). Improvement of Cashew Apple Juice (Anacardium occidentale L.) by Association with Passion Fruit Juice (Passiflora edulis). Food Nut. Sci., 12: 787-804.
]Search in Google Scholar
[
Agboola-Adedoja M., Adelusi A., Ogunwolu Q., Ugwu C., Alli M., Adesanya K., Akinpelu A. (2022). Cashew production, consumption and utilization: Implication on health of end users. World J. of Adv. Res. Rev., 14: 182-186.
]Search in Google Scholar
[
Ahaotu E.O., Ihekoronye B. (2019). Environmental, Ecological and Anti-Nutritional Factors for Cashew Utilization in Rabbit Production – A Review. Int. J. of Res. in Agr. and For., 6(1), 8 - 22.
]Search in Google Scholar
[
Aidoo R., Kwofie E.M., Ngadi M.O. (2022). Circularity of Cashew Apples: Examining the Product-Process Pathways, Techno-Functional, Nutritional/Phytomolecular Qualities for Food Applications. ACS Food Sci. Tech., 2(7): 1051-1066.
]Search in Google Scholar
[
Akinmoladun O.F. (2021). Stress amelioration potential of vitamin C in ruminants: a review. Trop Anim Health Prod, 54(1): 24.
]Search in Google Scholar
[
Akyereko Y.G., Wireko-Manu F., Alemawor F., Adzanyo M. (2022). Cashew Apples in Ghana: Stakeholders’ Knowledge, Perception, and Utilization. Int J Food Sci., 1-10.
]Search in Google Scholar
[
Akyereko Y.G., Yeboah G.B., Wireko-Manu F.D., Alemawor F., Mills-Robertson F.C., Odoom W. (2023). Nutritional value and health benefits of cashew apple. JSFA reports, 3(3):110-118.
]Search in Google Scholar
[
Alp D., Bulantekin Ö. (2021). The microbiological quality of various foods dried by applying different drying methods: a review. Eur Food Res Technol, 247(6): 1333-1343.
]Search in Google Scholar
[
Anaemene D., Fadupin G. (2022). Anti-nutrient reduction and nutrient retention capacity of fermentation, germination and combined germination-fermentation in legume processing. App. Food Res., 2(1): 100059.
]Search in Google Scholar
[
Anim-Jnr A.S., Ishaq S.B.Y., Sasu P., Gyimah S., Greathead H.M.R., Boesch C., Mabiki F.P., Emmambux M.N. (2025). Valorising mango, cashew apple, and papaya by-products for sustainable small ruminant production in low-income food deficit countries—a review [Review]. Front. Sust. Food Syst.
]Search in Google Scholar
[
Araújo A.R., Joaquim Bezerra C., Marcos Cláudio Pinheiro R., Maria do Socorro de Souza C., Luciano Cavalcante M., Rildson Melo F., Vandenberg Lira S. (2022). Dehydrated cashew apple in different grinding sizes to sheep. Acta Sci.. An. Sci., 44(1).
]Search in Google Scholar
[
Armah I. (2008). The effect of starter-grower pigs fed diets containing varying levels of dried cashew (Anarcadium Occidentale L.) pulp (DCP) [Masters thesis, Kwame Nkrumah University of Science and Technology]. https://ir.knust.edu.gh/bitstreams/5ca2e29e-2e5e-4470-a7bc-6b595bc4f9bc/download
]Search in Google Scholar
[
Aslam N., Hassan S.A., Mehak F., Zia S., Bhat Z.F., Yıkmış S., Aadil R.M. (2024). Exploring the potential of cashew waste for food and health applications- A review. J. Fu. Fo., 9: 100319.
]Search in Google Scholar
[
Bassett T.J. (2017). Le boom de l’anacarde dans le bassin cotonnier du Nord ivoirien. Structures de marché et prix à la production. Afri. cont., 263-264(3): 59-83.
]Search in Google Scholar
[
Benoit M., Mottet A. (2023). Energy scarcity and rising cost: Towards a paradigm shift for livestock. Agr. sys. 205: 103585.
]Search in Google Scholar
[
Besharati M., Maggiolino A., Palangi V., Kaya A., Jabbar M., Eseceli H., De Palo P., Lorenzo J.M. (2022). Tannin in Ruminant Nutrition: Review. Molecules, 27(23).
]Search in Google Scholar
[
Boateng M., Amoah K., Atuahene P., Frimpong Y., Okai D., Osei G. (2021). Effects of dried cashew (Anacardium occidentale L.) apple meal (DCAM) on the growth performance and internal organs of albino rats. Gh. J. Agri. Sci., 56: 14-21.
]Search in Google Scholar
[
Bojang B., Emang D. (2024). Can Cashew Value Chain Industry Improve Food Security: An Empirical Study from The Gambia. Sust., 16(15): 6607.
]Search in Google Scholar
[
Bojang B., Gibba A. (2021). The global competitiveness of West African cashew exporters. Bul. J. Agr. Sc., 27 1084-1092.
]Search in Google Scholar
[
Campos F.P., Nussio L.G., Sarmento P., Daniel J.L.P., Lima C.G. (2020). Effects of addition of different sources and doses of sugars on in vitro digestibilities of dry matter, fibre and cell wall monosaccharides of corn silage in ruminants. Animal, 14(8): 1667-1675.
]Search in Google Scholar
[
Cantalapiedra-Hijar G., Abo-Ismail M., Carstens G.E., Guan L.L., Hegarty R., Kenny D.A., McGee M., Plastow G., Relling A., Ortigues-Marty I. (2018). Review: Biological determinants of between-animal variation in feed efficiency of growing beef cattle. Animal, 12: s321-s335.
]Search in Google Scholar
[
Carr A.C., Maggini S. (2017). Vitamin C and Immune Function. Nut., 9(11). Castillo-Lopez E., Petri R.M., Ricci S., Rivera-Chacon R., Sener-Aydemir A., Sharma S.,
]Search in Google Scholar
[
Reisinger N., Zebeli Q. (2021). Dynamic changes in salivation, salivary composition, and rumen fermentation associated with duration of high-grain feeding in cows. J. Dai. Sc., 104(4): 4875-4892.
]Search in Google Scholar
[
Chambial S., Dwivedi S., Shukla K.K., John P.J., Sharma P. (2013). Vitamin C in Disease Prevention and Cure: An Overview. Ind. J. Cli. Biochem., 28(4): 314-328.
]Search in Google Scholar
[
Cobellis G., Trabalza-Marinucci M., Yu Z. (2016). Critical evaluation of essential oils as rumen modifiers in ruminant nutrition: A review. J. Sci. Tot. Env., 545-546: 556-568.
]Search in Google Scholar
[
Costa J.B., Rogério M.C.P., Carneiro M.S.S., Muniz L.C., Brasil E.P., Araújo A.R., Fontenele R.M., Batista N.J.M. (2021). Cashew nut meal as feed supplement for lambs. Animal, 15(7): 100203.
]Search in Google Scholar
[
Cruz Reina L.J., Durán-Aranguren D.D., Forero-Rojas L.F., Tarapuez-Viveros L.F., Durán-Sequeda D., Carazzone C., Sierra R. (2022). Chemical composition and bioactive compounds of cashew (Anacardium occidentale) apple juice and bagasse from Colombian varieties. Heliyon, 8(5).
]Search in Google Scholar
[
Dakuyo R., Konaté K., Kaboré K., Sanou A., Konkobo F.A., Bazié D., Sama H., Dicko M.H. (2023). Ascorbic acid, pigments, anti-nutritional factors, and nutraceutical potential of Anacardium occidentale fruits as affected by temperature. Int. J. of Fo. Pro., 26(1): 471-488.
]Search in Google Scholar
[
Danso-Abbeam G., Fosu S., Ogundeji A.A. (2021). Technical and resource-use efficiencies of cashew production in Ghana: implications on achieving sustainable development goals. Sci. Af., 14: e01003.
]Search in Google Scholar
[
Dao T.P., Nguyen D.V., Nhi T., Tri Nhut P., Nhan N., Bach L.G., Nguyen V.H., Do V.Q., Muoi N., Tran T.T. (2021). Effects of tannin, ascorbic acid, and total phenolic contents of cashew (Anacardium occidentale L.) apples blanched with saline solution. Food Res., 5: 409-416.
]Search in Google Scholar
[
De Angelis A. (2025). Banana Peels as an Alternative Livestock Nutritional Source: Chemical Composition and Meta-analysis. Agri Res Tech: Open Access J., 1.
]Search in Google Scholar
[
de França Serpa J., de Sousa Silva J., Borges Reis C.L., Micoli L., Alexandre e Silva L.M., Canuto K.M., Casimiro de Macedo A., Ponte Rocha M.V. (2020). Extraction and characterization of lignins from cashew apple bagasse obtained by different treatments. Biom. Bioe., 141: 105728.
]Search in Google Scholar
[
Diao Q., Zhang R., Fu T. (2019). Review of Strategies to Promote Rumen Development in Calves. Animals, 9(8): 490.
]Search in Google Scholar
[
Dijkstra J. (1994). Production and absorption of volatile fatty acids in the rumen. Liv. Prod. Sci., 39(1): 61-69.
]Search in Google Scholar
[
Dijkstra J., Ellis J.L., Kebreab E., Strathe A.B., López S., France J., Bannink A. (2012). Ruminal pH regulation and nutritional consequences of low pH. Ani. Feed Sci. Tech., 172(1): 22-33.
]Search in Google Scholar
[
El Oirdi M. (2024). Harnessing the Power of Polyphenols: A New Frontier in Disease Prevention and Therapy. Pharm., 17(6): 692.
]Search in Google Scholar
[
Fanimo A.O., Oduguwa O.O., Alade A.A. (2003). Growth performance, nutrient digestibility and carcass characteristics of growing rabbits fed cashew apple waste. Liv. Res. for Rur. Dev., 15(8).
]Search in Google Scholar
[
FAOSTAT. (2024). Food and Agriculture Organization. Retrieved October 25, 2024 from https://www.fao.org/faostat/en/#data/QCL/visualize
]Search in Google Scholar
[
Ferreira A.C.H., Rodriguez N.M., Neiva J.N.M., Pimentel P.G., Gomes S.P., Campos, W. E., Lopes, F. C. F. (2015). Nutritional evaluation of elephant-grass silages with different levels of by-products from the cashew juice industry. Rev. Bras. de Zoo., 44: 434-442.
]Search in Google Scholar
[
Fonseca N.V.B., Cardoso A.D.S., Granja-Salcedo Y.T., Siniscalchi D., Camargo K.D.V., Dornellas I.A., Silva M.L.C., Vecchio L.D.S.D., Grizotto R.K., Reis R.A. (2024). Effects of condensed tannin-enriched alternative energy feedstuff supplementation on performance, nitrogen utilization, and rumen microbial diversity in grazing beef cattle. Liv. Sci., 287: 105529.
]Search in Google Scholar
[
García-Rodríguez J., Saro C., Mateos I., González J.S., Carro M.D., Ranilla M.J. (2020). Effects of Replacing Extruded Maize by Dried Citrus Pulp in a Mixed Diet on Ruminal Fermentation, Methane Production, and Microbial Populations in Rusitec Fermenters. Animals, 10(8): 1316.
]Search in Google Scholar
[
Gawankar M., Salvi B., Pawar C., Khanvilkar M., Salvi S., Dalvi N., Malshe K., Kadam D., Saitwal Y., Haldankar P. (2018). Technology development for cashew apple processing in Konkan region–a review. Ad. Agr. Res. Tech., 2(1): 40-47.
]Search in Google Scholar
[
Gbohaïda V., Mossi I., Adjou E.S., Agbangnan P., Yehouenou B.B., Sohounhloué D.C. (2015). Morphological and physicochemical characterizations of cashew apples from Benin for their use as raw material in bioethanol production. Int. J. Pharm. Sci. Rev. Res., 35(2): 7-11.
]Search in Google Scholar
[
Gerpacio A.L., Castillo L.S. (1979). Nutrient composition of some Philippine feedstuffs. Extension Division, Department of Animal Science, College of Agriculture, University of the Philippines at Los Baños. Laguna, 117.
]Search in Google Scholar
[
Harper K.J., McNeill D.M. (2015). The Role iNDF in the Regulation of Feed Intake and the Importance of Its Assessment in Subtropical Ruminant Systems (the Role of iNDF in the Regulation of Forage Intake). Agric., 5(3): 778-790.
]Search in Google Scholar
[
Huang H., Lechniak D., Szumacher-Strabel M., Patra A.K., Kozłowska M., Kolodziejski P., Gao M., Ślusarczyk S., Petrič D., Cieslak A. (2022). The effect of ensiled paulownia leaves in a high-forage diet on ruminal fermentation, methane production, fatty acid composition, and milk production performance of dairy cows. J. Ani. Sci. Biotech., 13(1): 104.
]Search in Google Scholar
[
Huang P.H., Cheng Y.T., Lu W.C., Chiang P.Y., Yeh J.L., Wang C.C., Liang Y.S., Li P.H. (2024). Changes in Nutrient Content and Physicochemical Properties of Cavendish Bananas var. Pei Chiao during Ripening. Horticulturae, 10(4): 384.
]Search in Google Scholar
[
Jatuwong K., Suwannarach N., Kumla J., Penkhrue W., Kakumyan P., Lumyong S. (2020). Bioprocess for Production, Characteristics, and Biotechnological Applications of Fungal Phytases. Front Microbiol, 11: 188.
]Search in Google Scholar
[
Khade S.B., Khillare R.S., Dastagiri M.B. (2021). Global livestock development: Policies and vision. Ind. J. of Ani. Sci., 91(9): 770–779.
]Search in Google Scholar
[
Kiatti D.D., Koura B.I., Vastolo A., Chiacchio M.F., Vitaglione P., Dossa L.H., Cutrignelli M.I., Calabrò S. (2024). Sustainable ruminant nutrition in West Africa by in vitro characterization of cashew apple by-products. Heliyon, 10(18).
]Search in Google Scholar
[
Kiatti D.D., Vastolo A., Koura B.I., Vitaglione P., Cutrignelli M.I., Calabrò S. (2023). The Chemical Characteristics and In Vitro Degradability of Pineapple By-Products as Potential Feed for Ruminants. Animals, 13(20): 3238.
]Search in Google Scholar
[
Kim E.T., Guan le L., Lee S.J., Lee S.M., Lee S.S., Lee I.D., Lee S.K., Lee S.S. (2015). Effects of Flavonoid-rich Plant Extracts on In vitro Ruminal Methanogenesis, Microbial Populations and Fermentation Characteristics. Asian-Australas J Anim Sci, 28(4): 530-537.
]Search in Google Scholar
[
Kim T., Bae M., Lee J., Ghassemi Nejad J., Lee H. (2024). Dietary supplementation of phytoncide and soybean oil increases milk conjugated linoleic acid and depresses methane emissions in Holstein dairy cows. Scientific Reports, 14(1): 5439.
]Search in Google Scholar
[
Kircher, M., Pfefferle, W. (2001). The fermentative production of l-lysine as an animal feed additive. Chem., 43(1), 27-31. https://doi.org/10.1016/S0045-6535(00)00320-9
]Search in Google Scholar
[
Króliczewska B., Pecka-Kiełb E., Bujok J. (2023). Strategies Used to Reduce Methane Emissions from Ruminants: Controversies and Issues. Agriculture, 13(3): 602.
]Search in Google Scholar
[
La Van Kinh V.V.D., Phuong D.D. (1997). Chemical composition of cashew apple and cashew apple waste ensiled with poultry litter. Livest. Res. Rural Dev., 9: 1-8.
]Search in Google Scholar
[
Leite A.K., Fonteles T.V., Miguel T.B., da Silva G.S., de Brito E.S., Alves Filho E.G., Fernandes F.A., Rodrigues S. (2021). Atmospheric cold plasma frequency imparts changes on cashew apple juice composition and improves vitamin C bioaccessibility. Food Res. Int., 147: 110479.
]Search in Google Scholar
[
Li M., Hassan F., Peng L., Xie H., Liang X., Huang J., Huang F., Guo Y., Yang C. (2022). Mulberry flavonoids modulate rumen bacteria to alter fermentation kinetics in water buffalo. PeerJ, 10: e14309.
]Search in Google Scholar
[
Liao S.F., Wang T., Regmi N. (2015). Lysine nutrition in swine and the related monogastric animals: muscle protein biosynthesis and beyond. SpringerPlus, 4(1): 147.
]Search in Google Scholar
[
Liu Y., Zhu J., Liu Z., Zhi Y., Mei C., Wang H. (2025). Flavonoids as Promising Natural Compounds for Combating Bacterial Infections. Int. J. Mol. Sci., 26(6): 2455.
]Search in Google Scholar
[
Liu Z., de Souza T.S.P., Holland B., Dunshea F., Barrow C., Suleria H.A.R. (2023). Valorization of Food Waste to Produce Value-Added Products Based on Its Bioactive Compounds. Proc., 11(3).
]Search in Google Scholar
[
Lobo V., Patil A., Phatak A., Chandra N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev., 4(8): 118-126.
]Search in Google Scholar
[
Lopes L.G., Silva M.H., Figueiredo A., Canuto K.M., Brito E.S., Ribeiro P.R.V., Souza A.S.Q., Barioni-Júnior W., Esteves S.N., Chagas A.C.S. (2018). The intake of dry cashew apple fibre reduced fecal egg counts in Haemonchus contortus-infected sheep. Exp. Para., 195: 38-43.
]Search in Google Scholar
[
Lowor S., Agyente-Badu C. (2009). Mineral and proximate composition of cashew apple (Anarcadium occidentale L.) juice from Northern Savannah, Forest and Coastal Savannah regions in Ghana. Amr. J. of Food Tech.
]Search in Google Scholar
[
Lu C.D. (1988). Grazing behavior and diet selection of goats. Sm. Rum. Res., 1(3): 205-216.
]Search in Google Scholar
[
Martello H.F., De Paula N.F., Teobaldo R.W., Zervoudakis J.T., Fonseca M.A., Cabral L.S., Rocha J.K.L., Mundim A.T., Moraes E.H.B.K. (2020). Interaction between tannin and urea on nitrogen utilization by beef cattle grazing during the dry season. Liv. Sci., 234: 103988.
]Search in Google Scholar
[
Meneguelli T.S., Kolba N., Misra A., Dionísio A.P., Pelissari Kravchychyn A.C., Da Silva B.P., Stampini Duarte Martino H., Hermsdorff H.H., Tako E. (2023). Intra-Amniotic Administration of Cashew Nut (Anacardium occidentale L.) Soluble Extract Improved Gut Functionality and Morphology In Vivo (Gallus gallus). Nut., 15(10).
]Search in Google Scholar
[
Mok C.H., Urschel K.L. (2020). Invited Review — Amino acid requirements in horses. Asian-Australas J Anim Sci, 33(5): 679-695.
]Search in Google Scholar
[
Moss A.F., Chrystal P.V., Cadogan D.J., Wilkinson S.J., Crowley T.M., Choct M. (2021). Precision feeding and precision nutrition: a paradigm shift in broiler feed formulation? Anim. Biosci., 34(3): 354-362.
]Search in Google Scholar
[
Mothé C., Oliveira N., Freitas J., Mothé M. (2017). Cashew Tree Gum: A Scientific and Technological Review. Int. J. Env. Agri. and Biotech., 2: 681-688.
]Search in Google Scholar
[
Moutia I., Lakatos E., Kovács A.J. (2024). Impact of Dehydration Techniques on the Nutritional and Microbial Profiles of Dried Mushrooms. Foods, 13(20): 3245.
]Search in Google Scholar
[
Nikbakht Nasrabadi M., Sedaghat Doost A., Mezzenga R. (2021). Modification approaches of plant-based proteins to improve their techno-functionality and use in food products. Food Hydrocolloids, 118: 106789.
]Search in Google Scholar
[
Nwosu C.D., Adejumo O.A., Udoha W.N. (2016). Cashew apple utilization in Nigeria: Challenges and prospects. J. S. P. Post. Res., 7(2).
]Search in Google Scholar
[
Ohene-Adjei S., Chaves A.V., McAllister T.A., Benchaar C., Teather R.M., Forster R.J. (2008). Evidence of Increased Diversity of Methanogenic Archaea with Plant Extract Supplementation. Microbial Ecology, 56(2), 234-242. https://doi.org/10.1007/s00248-007-9340-0
]Search in Google Scholar
[
Ojediran T., Olorunlowu S., Adeboye Z., Emiola I. (2024b). Effects of graded levels of corn and cob meal on carcass parameters, organ weight, villi morphometric, and sensory properties of Topigs Norsvin TN70 weaned pigs. J. micro., biotech. and food sci., 14(1): e10831.
]Search in Google Scholar
[
Ojediran T.K., Olorunlowu S.A., Oyekola O., Olagoke O.C., Emiola I.A. (2024a). Cashew Apple: Nutritional composition, nutritive value and potentials as commercial feedstuff for livestock. Aceh J. Ani. Sci., 9(3): 128–137.
]Search in Google Scholar
[
Ojediran T., Olorunlowu S.A., Akere S., Olayeni T., Emiola I. (2025). Feeding Value of Varying Levels of Corn and Cob Meal on Weaned Pigs. Acta Uni. Agri. et Sil. Mend. Brun., 73(2): 129-139
]Search in Google Scholar
[
Ojo M.A. (2022). Tannins in Foods: Nutritional Implications and Processing Effects of Hydrothermal Techniques on Underutilized Hard-to-Cook Legume Seeds - A Review. Prev Nutr Food Sci., 27(1): 14-19.
]Search in Google Scholar
[
Okonkwo K.C., Obua B.E., Ifenkwe U.B., Malau-Aduli A.E.O. (2022). Growth performance, carcass characteristics and cost implications of supplementing Turkey poults with toasted Bambara nut by-products. Vet. Ani. Sci., 16: 100250.
]Search in Google Scholar
[
Okpanachi U., Attah S., Shaahu D.T. (2015). A Comparative Study Between Vitamins and Amino Acid Profile of Sun-Dried Red and Yellow Cashew Pulp. Agric. Food Sci., 237-242.
]Search in Google Scholar
[
Okpanachi U., Ayoade J., Tuleun C. (2016a). Composition and anti-nutritional factors (phytonutrients) present in both red and yellow varieties of sun-dried cashew pulp. Amer. J. Food Sci. H., 2(4): 45-48.
]Search in Google Scholar
[
Okpanachi U., Okpanachi G.A.C., Kaye J., Agu C.I., Odah E. (2019). Haematological Profile and Serum Biochemistry of West African Dwarf Goats Fed Sun-dried Yellow Cashew Pulp Based Diets. J. App. Sci., 19: 319-324.
]Search in Google Scholar
[
Okpanachi U., Oyewole B., Egbu C., Ganiyu Y. (2016b). Effects of Feeding Sun-Dried Yellow Cashew Pulp Based Diets on Performance, Dry Matter and Nutrient Digestibility of West African Dwarf Goats. An. Vet. Sci., 4: 7-12.
]Search in Google Scholar
[
Olagaray K.E., Bradford B.J. (2019). Plant flavonoids to improve productivity of ruminants – A review. Ani. Feed Sci. Tech., 251: 21-36.
]Search in Google Scholar
[
Oliveira M.E., Oliveira G.S., Maia G.A., Moreira R.D., Monteiro A.C. (2002). Major free amino acids in cashew apple juice: behaviour during the harvest season. Rev. Bras. de Frut., 24: 133-137.
]Search in Google Scholar
[
Oliveira N.N., Mothé C.G., Mothé M.G., de Oliveira L.G. (2020). Cashew nut and cashew apple: a scientific and technological monitoring worldwide review. J Food Sci Technol, 57(1): 12-21.
]Search in Google Scholar
[
Olubode O.O., Joseph-Adekunle T.T., Hammed L.A., Olaiya A.O. (2018). Evaluation of production practices and yield enhancing techniques on productivity of cashew (Anacardium occidentale L.). Fruits, 73(2): 75-100.
]Search in Google Scholar
[
Oluwatosin S., Olayemi C., Isiaka A. (2022). Nutritional evaluation of dried cashew apple in broiler chickens diets. Inn. Cas., 70.
]Search in Google Scholar
[
Oskoueian E., Abdullah N., Oskoueian A. (2013). Effects of Flavonoids on Rumen Fermentation Activity, Methane Production, and Microbial Population. BioMed Res. Int., 1-8.
]Search in Google Scholar
[
Oviedo-Rondón E.O., Toscan A., Fagundes N.S., Vidal J.K., Barbi J., Thiery P. (2024). Soybean meal nutrient composition, amino acid digestibility, and energy content according to the country of origin and year of harvest evaluated via NIRS. J. App. Pou. Res., 33(3): 100448.
]Search in Google Scholar
[
Patra A.K., Saxena J. (2009). The effect and mode of action of saponins on the microbial populations and fermentation in the rumen and ruminant production. Nutr. Res. Rev., 22(2): 204-219.
]Search in Google Scholar
[
Pimentel G.P., Pereira E., Queiroz A., Mizubuti I., Regadas Filho G., Maia I. (2011). Intake, apparent nutrient digestibility and ingestive behavior of sheep fed cashew nut meal. Rev. Bras. de Zootecn, 40: 1128-1133.
]Search in Google Scholar
[
Raboy V. (2000). Low-phytic-acid Grains. Food Nutr. Bulletin, 21(4): 423-427.
]Search in Google Scholar
[
Radojčin M., Pavkov I., Bursać Kovačević D., Putnik P., Wiktor A., Stamenković Z., Kešelj K., Gere A. (2021). Effect of Selected Drying Methods and Emerging Drying Intensification Technologies on the Quality of Dried Fruit: A Review. Process, 9(1): 132.
]Search in Google Scholar
[
Ramaiyan B., Singaravad K. (2012). Minerals and Bioactive Compounds in Cashew Apple (Anacardium occidentale L.). J. Food Res. Sci., 1: 32-36.
]Search in Google Scholar
[
Ramdani D., Hernaman I., Nurmeidiansyah A.A., Heryadi D., Nurachma S. (2019). Potential Use of Banana Peels Waste at Different Ripening Stages for Sheep Feeding on Chemical, Tannin, and In Vitro Assessments. IOP Conference Series: Earth and Environmental Science, 334(1): 012003.
]Search in Google Scholar
[
Rashid Z., Mirani Z.A., Zehra S., Gilani S.M.H., Ashraf A., Azhar A., Al-Ghanim K.A., Al-Misned F., Al-Mulahim N., Mahboob S., Galani S. (2020). Enhanced modulation of gut microbial dynamics affecting body weight in birds triggered by natural growth promoters administered in conventional feed. Saudi J Biol Sci., 27(10): 2747-2755.
]Search in Google Scholar
[
Rico R., Bulló M., Salas-Salvadó J. (2016). Nutritional composition of raw fresh cashew (Anacardium occidentale L.) kernels from different origin. Food Sci. Nutr., 4(2): 329-338.
]Search in Google Scholar
[
Roy A., Khan A., Ahmad I., Alghamdi S., Rajab B.S., Babalghith A.O., Alshahrani M.Y., Islam S., Islam M.R. (2022). Flavonoids a Bioactive Compound from Medicinal Plants and Its Therapeutic Applications. Biomed Res Int.
]Search in Google Scholar
[
Rudrapal M., Khairnar S.J., Khan J., Dukhyil A.B., Ansari M.A., Alomary M.N., Alshabrmi F.M., Palai S., Deb P.K., Devi R. (2022). Dietary Polyphenols and Their Role in Oxidative Stress-Induced Human Diseases: Insights Into Protective Effects, Antioxidant Potentials and Mechanism(s) of Action [Review]. Front. Pharm., 13.
]Search in Google Scholar
[
Russell J., Wilson D. (1996). Why Are Ruminal Cellulolytic Bacteria Unable to Digest Cellulose at Low pH? J. dairy scie., 79: 1503-1509.
]Search in Google Scholar
[
Sahie L., Doudjo S., Koné K., Assidjo E., Yao B. (2023). Some Processing Steps and Uses of Cashew Apples: A Review. Food Nutri. Sci., 14: 38-57.
]Search in Google Scholar
[
Sakhawat R., Asifa K., Aqsa H., Anwar A., Muhammad Faisal M. (2022). Food Dehydration Recent Advances and Approaches. In: A Comprehensive Review of the Versatile Dehydration Processes, Jelena D.J. (eds.). IntechOpen.
]Search in Google Scholar
[
Salehi B., Gültekin-Özgüven M., Kirkin C., Özçelik B., Morais-Braga M.F.B., Carneiro J.N.P., Bezerra C.F., Silva T.G.D., Coutinho H.D.M., Amina B., Armstrong L., Selamoglu Z., Sevindik M., Yousaf Z., Sharifi-Rad J., Muddathir A.M., Devkota H.P., Martorell M., Jugran A.K., Martins N. (2020). Antioxidant, Antimicrobial, and Anticancer Effects of Anacardium Plants: An Ethnopharmacological Perspective [Review]. Front. Endo., 11.
]Search in Google Scholar
[
Samtiya M., Aluko R.E., Dhewa T. (2020). Plant food anti-nutritional factors and their reduction strategies: an overview. Food Prod., Proc. Nutri., 2(1): 6.
]Search in Google Scholar
[
Santoso B., Kilmaskossu A., Sambodo P. (2007). Effects of saponin from Biophytum petersianum Klotzsch on ruminal fermentation, microbial protein synthesis and nitrogen utilization in goats. Ani. Feed Sci. Tech., 137(1): 58-68.
]Search in Google Scholar
[
Schumann C., Sitzenstock S., Erz L., Knoche M. (2020). Decreased deposition and increased swelling of cell walls contribute to increased cracking susceptibility of developing sweet cherry fruit. Planta, 252(6): 96.
]Search in Google Scholar
[
Sedó Molina G.E., Ras G., Barone G., Fernández-Varela R., Felix da Silva D., Jacobsen C., Duedahl-Olesen L., Bech Hansen E., Heiner Bang-Berthelsen C. (2024). Multiphasic and mixture lactic acid bacteria screening approach for the removal of antinutrients and off-flavors present in a pea, oat and potato blend. Food Res. Int., 197: 115200.
]Search in Google Scholar
[
Seradj A.R., Abecia L., Crespo J., Villalba D., Fondevila M., Balcells J. (2014). The effect of Bioflavex® and its pure flavonoid components on in vitro fermentation parameters and methane production in rumen fluid from steers given high concentrate diets. Ani. Feed Sci. Tech., 197: 85-91.
]Search in Google Scholar
[
Singh S.S., Abdullah S., Pradhan R.C., Mishra S. (2019). Physical, chemical, textural, and thermal properties of cashew apple fruit. J. Food Pr. Eng., 42(5): e13094.
]Search in Google Scholar
[
Souza H.A., Moraes E.H., Oliveira A.S., Batista E.D., Santos K.R., Sousa J.N., Ortelan J.C., Lamag A., Moraes K.A.K. (2020). Cashew processing product as alternative energy feedstuff for grazing beef cattle under tropical conditions. Liv. Sci., 236: 104022.
]Search in Google Scholar
[
Sreekutty P., Senthil M.S., Dildeep V., Biju C., Balusamy C. (2019). Chemical composition of cashew apple waste. Shanlax Int. J. Vet. Sci., 5: 1.
]Search in Google Scholar
[
Stypinski J.D., Weiss W.P., Carroll A.L., Kononoff P.J. (2024). Effect of acid detergent lignin concentration for diets formulated to be similar in neutral detergent fibre content on energy utilization in lactating Jersey cows. J. Dair. Sci., 107(8): 5699-5708.
]Search in Google Scholar
[
Szulc P., Nowak B., Ul Hassan M., Lechniak D., Slusarczyk S., Bocianowski J., Szumacher-Strabel M., Patra A., Cieslak A. (2023). Potential of Paulownia Leaves Silage in Lamb Diet to Improve Ruminal Fermentation and Fatty Acid Profile − An in vitro Study. Ann. Ani. Sci., 24.
]Search in Google Scholar
[
Tai A.V., Tuan B., Van T., Trach N. (2020). Use of cashew apple fruit silage in the cattle fattening diet. Liv. Res. Rur. Dev., 35.
]Search in Google Scholar
[
Talasila U., Shaik K.B. (2015). Quality, spoilage and preservation of cashew apple juice: A review. J. Food Sci. Tech., 52(1): 54-62.
]Search in Google Scholar
[
Tan B.L., Norhaizan M.E., Liew W.P.P., Sulaiman Rahman H. (2018). Antioxidant and Oxidative Stress: A Mutual Interplay in Age-Related Diseases [Review]. Front. Pharm., 9.
]Search in Google Scholar
[
Tayengwa T., Mapiye C. (2018). Citrus and Winery Wastes: Promising Dietary Supplements for Sustainable Ruminant Animal Nutrition, Health, Production, and Meat Quality. Sus., 10(10): 3718.
]Search in Google Scholar
[
Thornton P.K. (2010). Livestock production: recent trends, future prospects. Philos Trans R Soc. Lond. B. Biol. Sci., 365(1554): 2853-2867.
]Search in Google Scholar
[
Tsiplakou E., Hadjigeorgiou I., Sotirakoglou K., Zervas G. (2011). Differences in mean retention time of sheep and goats undercontrolled feeding practices. Small Rum. Res., 95: 48-53.
]Search in Google Scholar
[
United Nations. (2017). World population projected to reach 9.8 billion in 2050, and 11.2 billion in 2100. Retrieved October 25, 2024 from https://www.un.org/en/desa/world-population-projected-reach-98-billion-2050-and-112-billion-2100
]Search in Google Scholar
[
van Walraven N., Stark A.H. (2024). From food waste to functional component: Cashew apple pomace. Crit. Rev. Food Sci. Nutr., 64(20): 7101-7117.
]Search in Google Scholar
[
Vasta V., Daghio M., Cappucci A., Buccioni A., Serra A., Viti C., Mele M. (2019). Invited review: Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fibre digestion, and methane emission: Experimental evidence and methodological approaches. J. Dair. Sci., 102(5): 3781-3804.
]Search in Google Scholar
[
Veena B., Shweatha E. (2024). Formulation of cashew apple-based products for nutrition-centric sustainability. Int. J. Sci. Res. Arch., 12: 2169-2178.
]Search in Google Scholar
[
Wang G.Y., Qin S.L., Zheng Y.N., Geng H.J., Chen L., Yao J.H., Deng L. (2023). Propionate promotes gluconeogenesis by regulating mechanistic target of rapamycin (mTOR) pathway in calf hepatocytes. Ani. Nutr., 15: 88-98.
]Search in Google Scholar
[
Wang Z., Yin L., Liu L., Lan X., He J., Wan F., Shen W., Tang S., Tan Z., Yang Y. (2022). Tannic acid reduced apparent protein digestibility and induced oxidative stress and inflammatory response without altering growth performance and ruminal microbiota diversity of Xiangdong black goats. Front. Vet. Sci., 9: 1004841.
]Search in Google Scholar
[
Weimer P.J. (2022). Degradation of Cellulose and Hemicellulose by Ruminal Microorganisms. Microorganis, 10(12): 2345.
]Search in Google Scholar
[
Wild K.J., Siegert W., Windisch W.M., Südekum K.H., Rodehutscord M. (2021). Meta-analysis-based estimates of efficiency of calcium utilisation by ruminants. Animal, 15(8): 100315.
]Search in Google Scholar
[
Xue F., Zhou Z., Ren L., Meng Q. (2011). Influence of rumen-protected lysine supplementation on growth performance and plasma amino acid concentrations in growing cattle offered the maize stalk silage/maize grain-based diet. Ani. Feed Sci. Tech., 169(1): 61-67.
]Search in Google Scholar
[
Yanza Y.R., Irawan A., Jayanegara A., Ramadhani F., Respati A.N., Fitri A., Hidayat C., Niderkorn V., Cieslak A., Szumacher-Strabel M., Hidayat R., Tanuwiria U.H. (2024). Saponin Extracts Utilization as Dietary Additive in Ruminant Nutrition: A Meta-Analysis of In Vivo Studies. Animals, 14: 1231.
]Search in Google Scholar