[
Aguzzi J., Violino S., Costa C., Bahamon N., Navarro J., Chatzievangelou D., Company J.B. (2023). Established and emerging research trends in Norway lobster, Nephrops norvegicus. Biology, 12: 225.
]Search in Google Scholar
[
Ahmed S. (2023). Anthropogenic threats to honeybee ecology: A review. J. Adv. Res. Agric. Sci. Technol., 6: 21–43.
]Search in Google Scholar
[
Ajuwon V., Cruz B.F., Carriço P., Champalimaud Research Scientific Hardware Platform, Kacelnik A., Monteiro T. (2024). GoFish: A low-cost, open-source platform for closed-loop behavioural experiments on fish. Behav. Res. Methods, 56: 318–329.
]Search in Google Scholar
[
Alavian P.S.S., Hamidian A.H., Ashrafi S., Eagderi S., Khazaee M. (2017). Study on age-related bioaccumulation of some heavy metals in the soft tissue of rock oyster (Saccostrea cucullata) from Laft Port - Qeshm Island, Iran. Iran. J. Fish. Sci., 16: 897–906.
]Search in Google Scholar
[
Balzani P., Galeotti G., Scheggi S., Masoni A., Santini G., Baracchi D. (2022). Acute and chronic ingestion of polyethylene (PE) microplastics has mild effects on honey bee health and cognition. Environ. Pollut., 305: 119318.
]Search in Google Scholar
[
Barboza L.G.A., Cunha S.C., Monteiro C., Fernandes J.O., Guilhermino L. (2020). Bisphenol A and its analogs in muscle and liver of fish from the North East Atlantic Ocean in relation to microplastic contamination. Exposure and risk to human consumers. J. Hazard. Mat., 393: 122419.
]Search in Google Scholar
[
Boyero L., López-Rojo N., Bosch J., Alonso A., Correa-Araneda F., Pérez J. (2020). Microplastics impair amphibian survival, body condition and function. Chemosphere, 244: 125500.
]Search in Google Scholar
[
Briffa M., Arnott G., Hardege J.D. (2023). Hermit crabs as model species for investigating the behavioural responses to pollution. Sci. Total Environ., 167360.
]Search in Google Scholar
[
Chellasamy G., Ramasundaram S., Veerapandian M., Chandran M., Dhanasekaran B., Oh T.H., Yun K. (2023). Systematic review on fate and behavior of microplastics towards the environment. TrAC Trends Anal. Chem., 169: 117390.
]Search in Google Scholar
[
Chen Q., Lackmann C., Wang W., Seiler T.B., Hollert H., Shi H. (2020). Microplastics lead to hyperactive swimming behaviour in adult zebrafish. Aquat. Toxicol., 224: 105521.
]Search in Google Scholar
[
Covello C., Di Vincenzo F., Cammarota G., Pizzoferrato M. (2024). Micro (nano) plastics and their potential impact on human gut health: a narrative review. Curr. Issues Mol. Biol., 46: 2658–2677.
]Search in Google Scholar
[
Crump A., Mullens C., Bethell E.J., Cunningham E.M., Arnott G. (2020). Microplastics disrupt hermit crab shell selection. Biol. Lett., 16: 20200030.
]Search in Google Scholar
[
Crump A., Aiken C., Cunningham E.M., Arnott G. (2023). Short-term microplastic exposure impairs cognition in hermit crabs. Animals, 13: 1055.
]Search in Google Scholar
[
Cunningham E.M., Mundye A., Kregting L., Dick J.T.A., Crump A., Riddell G.E., Arnott G. (2021). Animal contests and microplastics: evidence of disrupted behaviour in hermit crabs Pagurus bernhardus. R. Soc. Open Sci., 8.
]Search in Google Scholar
[
da Costa Araújo A.P., de Melo N.F.S., de Oliveira Junior A.G., Rodrigues F.P., Fernandes T., de Andrade Vieira J.E., Rocha T.L., Malafaia G. (2020 a). How much are microplastics harmful to the health of amphibians? A study with pristine polyethylene microplastics and Physalaemus cuvieri. J. Hazard. Mat., 382: 121066.
]Search in Google Scholar
[
da Costa Araújo A.P., Malafaia G. (2020 b). Can short exposure to polyethylene microplastics change tadpoles’ behavior? A study conducted with neotropical tadpole species belonging to order Anura (Physalaemus cuvieri). J. Hazard. Mat., 391: 122214.
]Search in Google Scholar
[
Dalvand M., Hamidian A.H. (2023). Occurrence and distribution of microplastics in wetlands. Sci. Total Environ., 862: 160740.
]Search in Google Scholar
[
De Felice B., Bacchetta R., Santo N., Tremolada P., Parolini M. (2018). Polystyrene microplastics did not affect body growth and swimming activity in Xenopus laevis tadpoles. Environ. Sci. Pollut. Res., 25: 34644–34651.
]Search in Google Scholar
[
De Felice B., Sabatini V., Antenucci S., Gattoni G., Santo N., Bacchetta R., Parolini M. (2019). Polystyrene microplastics ingestion induced behavioral effects to the cladoceran Daphnia magna. Chemosphere, 231: 423–431.
]Search in Google Scholar
[
Delaeter C., Spilmont N., Delleuze M., Seuront L. (2023). Lack of behavioral effect of surgical mask leachate on the Asian shore crab Hemigrapsus sanguineus: Implications for invasion success in polluted coastal waters. Sci. Total Environ., 892: 164683.
]Search in Google Scholar
[
Deng Y., Jiang X., Zhao H., Yang S., Gao J., Wu Y., Diao Q., Hou C. (2021). Microplastic polystyrene ingestion promotes the susceptibility of honeybee to viral infection. Environ. Sci. Technol., 55: 11680–11692.
]Search in Google Scholar
[
Dou Y., Zhang M., Zhang H., Zhang C., Feng L., Hu J., Chen Z.J. (2024). Lactating exposure to microplastics at the dose of infants ingested during artificial feeding induced reproductive toxicity in female mice and their offspring. Sci. Total Environ., 949: 174972.
]Search in Google Scholar
[
Ehlers S.M., Maxein J., Koop J.H. (2020). Low‐cost microplastic visualization in feeding experiments using an ultraviolet light‐emitting flashlight. Hoboken, USA: John Wiley & Sons, Inc., 35: 265–273.
]Search in Google Scholar
[
e Souza-Ferreira M.L.C., Dos Reis A.J.O., Ferreira E.B.L., Dipold J., Freitas A.Z., Wetter N.U., Vieira T.B. (2025). First record of microplastic contamination in adult endemic Amazonian anuran species. Sci. Rep., 15: 2403.
]Search in Google Scholar
[
Feizi F., Akhbarizadeh R., Hamidian A.H. (2024). Microplastics in urban water systems, Tehran Metropolitan, Iran. Environ. Monit. Assess., 196: 643.
]Search in Google Scholar
[
Fuster B., Alomar C., González G.P., Martínez R.M.G., Rojas D.L.S., Hernando P.F., Deudero S. (2022). Assessing microplastic ingestion and occurrence of bisphenols and phthalates in bivalves, fish and holothurians from a Mediterranean marine protected area. Environ. Res., 214: 114034.
]Search in Google Scholar
[
Glencross B., Fracalossi D.M., Hua K., Izquierdo M., Mai K., Øverland M., Yakupityage A. (2023). Harvesting the benefits of nutritional research to address global challenges in the 21st century. J. World Aquac. Soc., 54: 343–363.
]Search in Google Scholar
[
Gubert P., Gubert G., Oliveira R.C.D., Fernandes I.C.O., Bezerra I.C., Ramos B.D., Mosca D.H. (2023). Caenorhabditis elegans as a prediction platform for nanotechnology-based strategies: Insights on analytical challenges. Toxics, 11: 239.
]Search in Google Scholar
[
Hamidian A.H., Ozumchelouei E.J., Feizi F., Wu C., Zhang Y., Yang M. (2021). A review on the characteristics of microplastics in wastewater treatment plants: A source for toxic chemicals. J. Clean. Prod., 295: 126480.
]Search in Google Scholar
[
Hamidian A.H., Dalvand M. (2023). Main pathways for microplastics in freshwater systems: A review on potential sources and drivers of microplastic pollution in rivers. Int. J. Aquat. Biol., 11: 583–604.
]Search in Google Scholar
[
Hanachi P., Khoshnamvand M., Walker T.R., Hamidian A.H. (2022). Nano-sized polystyrene plastics toxicity to microalgae Chlorella vulgaris: Toxicity mitigation using humic acid. Aquat. Toxicol., 245: 106123.
]Search in Google Scholar
[
Hou L., Chen S., Shi W., Chen H., Liang Y., Wang X., Tan J., Wang Y., Deng X., Zhan M., et al. (2020). Norethindrone alters mating behaviors, ovary histology, hormone production and transcriptional expression of steroidogenic genes in zebrafish (Danio rerio). Ecotoxicol. Environ. Saf., 195: 110496.
]Search in Google Scholar
[
Hou J., Lei Z., Cui L., Hou Y., Yang L., An R., Zhang L. (2021). Polystyrene microplastics lead to pyroptosis and apoptosis of ovarian granulosa cells via NLRP3/Caspase-1 signaling pathway in rats. Ecotoxicol. Environ. Saf., 212: 112012.
]Search in Google Scholar
[
Jin H., Yang C., Jiang C., Li L., Pan M., Li D., Ding J. (2022). Evaluation of neurotoxicity in BALB/c mice following chronic exposure to polystyrene microplastics. Environ. Health Perspect., 130: 107002.
]Search in Google Scholar
[
Kardgar A.K., Ghosh D., Sturve J., Agarwal S., Almroth B.C. (2023). Chronic poly (l-lactide) (PLA)-microplastic ingestion affects social behavior of juvenile European perch (Perca fluviatilis). Sci. Total Environ., 881: 163425.
]Search in Google Scholar
[
Khoshnamvand M., Hamidian A.H., Ashtiani S., Ali J., Pei D.S. (2024). Combined toxic effects of polystyrene nanoplastics and lead on Chlorella vulgaris growth, membrane lipid peroxidation, antioxidant capacity, and morphological alterations. Environ. Sci. Pollut. Res., 31: 28620–28631.
]Search in Google Scholar
[
Kim S.W., An Y.J. (2019). Soil microplastics inhibit the movement of springtail species. Environ. Int., 126: 699–706.
]Search in Google Scholar
[
Kim K., Yoon H., Choi J.S., Jung Y.J., Park J.W. (2022). Chronic effects of nano and microplastics on reproduction and development of marine copepod Tigriopus japonicus. Ecotoxicol. Environ. Saf., 243: 113962.
]Search in Google Scholar
[
Lan X.-R., Li Y.-W., Chen Q.-L., Shen Y.-J., Liu Z.-H. (2020). Tributyltin impaired spermatogenesis and reproductive behavior in male zebrafish. Aquat. Toxicol., 224: 105503.
]Search in Google Scholar
[
Lei L., Wu S., Lu S., Liu M., Song Y., Fu Z., He D. (2018). Microplastic particles cause intestinal damage and other adverse effects in zebrafish (Danio rerio) and nematode (Caenorhabditis elegans). Sci. Total Environ., 619: 1–8.
]Search in Google Scholar
[
Li Y., Chen G., Xu K., Huang K., Wang J. (2021). Microplastics environmental effect and risk assessment on the aquaculture systems from South China. Int. J. Environ. Res. Public Health, 18: 1869.
]Search in Google Scholar
[
Li J., Yu S., Yu Y., Xu M. (2022). Effects of microplastics on higher plants: a review. Bull. Environ. Contam. Toxicol., 109: 241–265.
]Search in Google Scholar
[
Lv W., Zhou W., Lu S., Huang W., Yuan Q., Tian M., He D. (2019). Microplastic pollution in rice-fish co-culture system: A report of three farmland stations in Shanghai, China. Sci. Total Environ., 652: 1209–1218.
]Search in Google Scholar
[
Luan J., Zhang S., Xu Y., Wen L., Feng X. (2023). Effects of microplastic exposure on the early developmental period and circadian rhythm of zebrafish (Danio rerio): A comparative study of polylactic acid and polyglycolic acid. Ecotoxicol. Environ. Saf., 258: 114994.
]Search in Google Scholar
[
Luo T., Zhang Y., Wang C., Wang X., Zhou J., Shen M., Jin Y. (2019a). Maternal exposure to different sizes of polystyrene microplastics during gestation causes metabolic disorders in their offspring. Environ. Pollut., 255: 113122.
]Search in Google Scholar
[
Luo T., Wang C., Pan Z., Jin C., Fu Z., Jin Y. (2019b). Maternal polystyrene microplastic exposure during gestation and lactation altered metabolic homeostasis in the dams and their F1 and F2 offspring. Environ. Sci. Technol., 53: 10978–10992.
]Search in Google Scholar
[
Mak C.W., Yeung K.C.F., Chan K.M. (2019). Acute toxic effects of polyethylene microplastic on adult zebrafish. Ecotoxicol. Environ. Saf., 182: 109442.
]Search in Google Scholar
[
Mansouri B., Pourkhabbaz A., Ebrahimpour M., Babaei H., Hamidian A.H. (2013). Bioaccumulation and elimination rate of cobalt in Capoeta fusca under controlled conditions. Chem. Speciat. Bioavailab., 25: 52–56.
]Search in Google Scholar
[
Mirzajani A.R., Hamidian A.H., Karami M. (2016 a). Metal bioaccumulation in representative organisms from different trophic levels of the Caspian Sea. Iran. J. Fish. Sci., 15: 1027–1043.
]Search in Google Scholar
[
Mirzajani A., Hamidian A.H., Abbasi K., Karami M. (2016 b). Distribution and abundance of fish in the southwest of Caspian Sea coastal waters. Russ. J. Mar. Biol., 42: 178–189.
]Search in Google Scholar
[
Mozafarjalali M., Hamidian A.H., Sayadi M.H. (2023). Microplastics as carriers of iron and copper nanoparticles in aqueous solution. Chemosphere, 324: 138332.
]Search in Google Scholar
[
McDaid A., Cunningham E.M., Crump A., Hardiman G., Arnott G. (2023). Does microplastic exposure and sex influence shell selection and motivation in the common European hermit crab (Pagurus bernhardus) Sci. Total Environ., 855: 158576.
]Search in Google Scholar
[
Orger M.B., de Polavieja G.G. (2017). Zebrafish behavior: opportunities and challenges. Annu. Rev. Neurosci., 40: 125–147.
]Search in Google Scholar
[
Padashbarmchi Z., Hamidian A.H., Khorasani N., McCabe A., Halog A. (2015). Environmental life cycle assessments of emerging anode materials for Li-ion batteries-metal oxide NPs. Environ. Prog. Sustain. Energy, 34: 1740–1747.
]Search in Google Scholar
[
Pan Y., Long Y., Hui J., Xiao W., Yin J., Li Y., Chen L. (2022). Microplastics can affect the trophic cascade strength and stability of plankton ecosystems via behavior-mediated indirect interactions. J. Hazard. Mater., 430: 128415.
]Search in Google Scholar
[
Parolini M., Stucchi M., Ambrosini R., Romano A. (2023). A global perspective on microplastic bioaccumulation in marine organisms. Ecol. Indic., 149: 110179.
]Search in Google Scholar
[
Proca B., Solcan C., Solcan G. (2024). Neurotoxicity of some environmental pollutants to zebrafish. Life, 14: 640.
]Search in Google Scholar
[
Qiang L., Hu H., Li G., Xu J., Cheng J., Wang J., Zhang R. (2023). Plastic mulching, and occurrence, incorporation, degradation, and impacts of polyethylene microplastics in agroecosystems. Ecotoxicol. Environ. Saf., 263: 115274.
]Search in Google Scholar
[
Rahman T., Candolin U. (2022). Linking animal behavior to ecosystem change in disturbed environments. Front. Ecol. Evol., 10: 893453.
]Search in Google Scholar
[
Rao S.R., Olechnowicz S.W., Krätschmer P., Jepson J.E., Edwards C.M., Edwards J.R. (2019). Small animal video tracking for activity and path analysis using a novel open-source multi-platform application (AnimApp). Sci. Rep., 9: 12343.
]Search in Google Scholar
[
Rauen T.V., Mukhanov V.S., Baiandina I.S., Lyakh A.M. (2024). Influence of microplastics on the nutritional and locomotive activity of dinoflagellate Oxyrrhis marina under experimental conditions. Inl. Water Biol., 17: 316–326.
]Search in Google Scholar
[
Rauen T.V., Mukhanov V.S., Aganesova L.O. (2023). Ingestion of microplastics by the heterotrophic dinoflagellate Oxyrrhis marina. Mar. Biol. J., 8: 64–75.
]Search in Google Scholar
[
Razeghi N., Hamidian A.H., Wu C., Zhang Y., Yang M. (2022). Sample preparation methods for the analysis of microplastics in freshwater ecosystems: a review. Environ. Chem. Lett., 20: 417–443.
]Search in Google Scholar
[
Razeghi N., Hamidian A.H., Wu C., Zhang Y., Yang M. (2021 a). Microplastic sampling techniques in freshwaters and sediments: a review. Environ. Chem. Lett., 19: 4225–4252.
]Search in Google Scholar
[
Razeghi N., Hamidian A.H., Wu C., Zhang Y., Yang M. (2021 b). Scientific studies on microplastics pollution in Iran: An in-depth review of the published articles. Mar. Pollut. Bull., 162: 111901.
]Search in Google Scholar
[
Relić R., Đukić-Stojčić M. (2023). Influence of environmental pollution on animal behavior. Contemp. Agric., 72: 216–223.
]Search in Google Scholar
[
Rodríguez-Torres R., Almeda R., Kristiansen M., Rist S., Winding M.S., Nielsen T.G. (2020). Ingestion and impact of microplastics on Arctic Calanus copepods. Aquat. Toxicol., 228: 105631.
]Search in Google Scholar
[
Santos D., Luzio A., Matos C., Bellas J., Monteiro S.M., Félix L. (2021 a). Microplastics alone or co-exposed with copper induce neurotoxicity and behavioral alterations on zebrafish larvae after a subchronic exposure. Aquat. Toxicol., 235: 105814.
]Search in Google Scholar
[
Santos D., Félix L., Luzio A., Parra S., Bellas J., Monteiro S.M. (2021 b). Single and combined acute and subchronic toxic effects of microplastics and copper in zebrafish (Danio rerio) early life stages. Chemosphere, 277: 130262.
]Search in Google Scholar
[
Santos D., Luzio A., Félix L., Cabecinha E., Bellas J., Monteiro S.M. (2022). Microplastics and copper induce apoptosis, alter neurocircuits, and cause behavioral changes in zebrafish (Danio rerio) brain. Ecotoxicol. Environ. Saf., 242: 113926.
]Search in Google Scholar
[
Sawaki R., Sato D., Nakayama H., Nakagawa Y., Shimada Y. (2019). ZF-AutoML: An easy machine-learning-based method to detect anomalies in fluorescent-labelled zebrafish. Inventions, 4: 72.
]Search in Google Scholar
[
Scribano G., Gazzola A., Winkler A., Balestrieri A., Grioni A., Lastrico G., Pellitteri-Rosa D. (2023). Anti-predator behavioral responses of Italian agile frog tadpoles (Rana latastei) exposed to microplastics. Environ. Sci. Pollut. Res., 30: 13688–13696.
]Search in Google Scholar
[
Sarasamma S., Audira G., Siregar P., Malhotra N., Lai Y.H., Liang S.T., Chen J.R., Chen K.H., Hsiao C.D. (2020). Nanoplastics cause neurobehavioral impairments, reproductive and oxidative damages, and biomarker responses in zebrafish: throwing up alarms of widespread health risk of exposure. Int. J. Mol. Sci., 21: 1410.
]Search in Google Scholar
[
Shengchen W., Jing L., Yujie Y., Yue W., Shiwen X. (2021). Polystyrene microplastics-induced ROS overproduction disrupts the skeletal muscle regeneration by converting myoblasts into adipocytes. J. Hazard. Mater., 417: 125962.
]Search in Google Scholar
[
Sonwani S., Madaan S., Arora J., Suryanarayan S., Rangra D., Mongia N., Saxena P. (2021). Inhalation exposure to atmospheric nanoparticles and its associated impacts on human health: a review. Front. Sustain. Cities, 3: 690444.
]Search in Google Scholar
[
Sun T., Zhan J., Li F., Ji C., Wu H. (2021a). Environmentally relevant concentrations of microplastics influence the locomotor activity of aquatic biota. J. Hazard. Mater., 414: 125581.
]Search in Google Scholar
[
Sun T., Zhan J., Li F., Ji C., Wu H. (2021b). Evidence-based meta-analysis of the genotoxicity induced by microplastics in aquatic organisms at environmentally relevant concentrations. Sci. Total Environ., 783: 147076.
]Search in Google Scholar
[
Swank A., Blevins K., Bourne A., Ward J. (2022). Do microplastics impair male dominance interactions in fish? A test of the vector hypothesis. Ecol. Evol., 12: e8620.
]Search in Google Scholar
[
Tien C.J., Wang Z.X., Chen C.S. (2020). Microplastics in water, sediment, and fish from the Fengshan River system: Relationship to aquatic factors and accumulation of polycyclic aromatic hydrocarbons by fish. Environ. Pollut., 265: 114962.
]Search in Google Scholar
[
Torres-Ruiz M., de Alba González M., Morales M., Martin-Folgar R., González M.C., Cañas-Portilla A.I., De la Vieja A. (2023). Neurotoxicity and endocrine disruption caused by polystyrene nanoparticles in zebrafish embryo. Sci. Total Environ., 874: 162406.
]Search in Google Scholar
[
Tosetto L., Williamson J.E., Brown C. (2017). Trophic transfer of microplastics does not affect fish personality. Anim. Behav., 123: 159–167.
]Search in Google Scholar
[
Venâncio C., Gabriel A., Oliveira M., Lopes I. (2022). Feeding exposure and feeding behaviour as relevant approaches in the assessment of the effects of micro(nano)plastics to early life stages of amphibians. Environ. Res., 212: 113476.
]Search in Google Scholar
[
Wang F., Wu H., Wu W., Wang L., Liu J., An L., Xu Q. (2021). Microplastic characteristics in organisms of different trophic levels from Liaohe Estuary, China. Sci. Total Environ., 789: 148027.
]Search in Google Scholar
[
Wang K., Li J., Zhao L., Mu X., Wang C., Wang M., Wu L. (2021). Gut microbiota protects honey bees (Apis mellifera L.) against polystyrene microplastics exposure risks. J. Hazard. Mater., 402: 123828.
]Search in Google Scholar
[
Wang H., Wang Y., Wang Q., Lv M., Zhao X., Ji Y., Chen L. (2022). The combined toxic effects of polyvinyl chloride microplastics and di(2-ethylhexyl) phthalate on the juvenile zebrafish (Danio rerio). J. Hazard. Mater., 440: 129711.
]Search in Google Scholar
[
Wang W.X. (2023). Environmental toxicology of marine microplastic pollution. Camb. Prisms Plast., 1: e10.
]Search in Google Scholar
[
Wu B., Yu H., Yi J., Lei P., He J., Ruan J., Zhang X. (2024). Behavioral studies of zebrafish reveal a new perspective on the reproductive toxicity of micro- and nanoplastics. Toxics, 12: 178.
]Search in Google Scholar
[
Wu C., Xiong X., Hamidian A.H., Zhang Y., Xu X. (2022). A review on source, occurrence, and impacts of microplastics in freshwater aquaculture systems in China. Water Biol. Secur., 20: 100040.
]Search in Google Scholar
[
Yan W., Li G., Lu Q., Hou J., Pan M., Peng M., Peng X., Wan H., Liu X., Wu Q. (2023). Molecular mechanisms of tebuconazole affecting the social behavior and reproduction of zebrafish. Int. J. Environ. Res. Public Health, 20: 3928.
]Search in Google Scholar
[
Yang B., Han Y., Hu S., Xie X., Zhu X., Yuan L. (2025). Polystyrene microplastics induce depression-like behavior in zebrafish via neuroinflammation and circadian rhythm disruption. Sci. Total Environ., 959: 178085.
]Search in Google Scholar
[
Yang J., Guo C., Luo Y., Fan J., Wang W., Yin X., Xu J. (2023). Effect of thiamethoxam on the behavioral profile alteration and toxicity of adult zebrafish at environmentally relevant concentrations. Sci. Total Environ., 858: 159883.
]Search in Google Scholar
[
Yao J., Li H., Lan J., Bao Y., Du X., Zhao Z., Hu G. (2023). Spectroscopic investigations on the interaction between nanoplastic and catalase on a molecular level. Sci. Total Environ., 863: 160903.
]Search in Google Scholar
[
Yin L., Chen B., Xia B., Shi X., Qu K. (2018). Polystyrene microplastics alter the behavior, energy reserve, and nutritional composition of marine jacopever (Sebastes schlegelii). J. Hazard. Mater., 360: 97–105.
]Search in Google Scholar
[
Yu H., Qi W., Cao X., Wang Y., Li Y., Xu Y., Qu J. (2022). Impact of microplastics on the foraging, photosynthesis, and digestive systems of submerged carnivorous macrophytes under low and high nutrient concentrations. Environ. Pollut., 292: 118220.
]Search in Google Scholar
[
Yu H., Chen Q., Qiu W., Ma C., Gao Z., Chu W., Shi H. (2022). Concurrent water- and foodborne exposure to microplastics leads to differential microplastic ingestion and neurotoxic effects in zebrafish. Water Res., 219: 118582.
]Search in Google Scholar
[
Zeman M., Okuliarova M., Rumanova V. S. (2023). Disturbances of hormonal circadian rhythms by light pollution. Int. J. Mol. Sci., 24: 7255.
]Search in Google Scholar
[
Zhang K., Hamidian A. H., Tubić A., Zhang Y., Fang J. K., Wu C., Lam P. K. (2021). Understanding plastic degradation and microplastic formation in the environment: A review. Environ. Pollut., 274: 116554.
]Search in Google Scholar
[
Zheng X., Zhang K., Zhao Y., Fent K. (2021). Environmental chemicals affect circadian rhythms: An underexplored effect influencing health and fitness in animals and humans. Environ. Int., 149: 106159.
]Search in Google Scholar
[
Zhou J., Wen Y., Marshall M. R., Zhao J., Gui H., Yang Y., Zang H. (2021). Microplastics as an emerging threat to plant and soil health in agroecosystems. Sci. Total Environ., 787: 147444.
]Search in Google Scholar
[
Zhou F., Wang Y., Liu X., Xu S., Chen D., Wang X. (2024). The effects of polystyrene microplastics on feeding, growth, and trophic upgrading of protozoan grazers. Sci. Total Environ., 952: 175986.
]Search in Google Scholar