[Abenavoli L., Scarpellini E., Colica C., Boccuto L., Salehi B., Sharifi-Rad J., Aiello V., Romano B., De Lorenzo A., Izzo A.A. (2019). Gut microbiota and obesity: A role for probiotics. Nutrition, 7: 2690.]Search in Google Scholar
[Accogli G., Crovace A.M., Mastrodonato M., Rossi G., Francioso E.G., Desantis S. (2018). Probiotic supplementation affects the glycan composition of mucins secreted by Brunner’s glands of the pig duodenum. Ann. Anat. – Anatom. Anzeiger, 218: 236–242.]Search in Google Scholar
[Adibi S.A. (2003). Regulation of expression of the intestinal oligo-peptide transporter (Pept-1) in health and disease. Am. J. Physiol. Gastrointest. Liver Physiol., 285: G779–G788.]Search in Google Scholar
[Ahmadi S., Wang S., Nagpal R., Wang B., Jain S., Razazan A., Mishra S.P., Zhu X., Wang Z., Kavanagh K. (2020). A human origin pro-biotic cocktail ameliorates aging-related leaky gut and inflammation via modulating the microbiota/taurine/tight junction axis. JCI Insight., 5: e132055.]Search in Google Scholar
[Ait-Omar A., Monteiro-Sepulveda M., Poitou C., Le Gall M., Cotillard A., Gile J., Brot-Laroche E. (2011). GLUT2 accumulation in enterocyte apical and intracellular membranes: a study in morbidly obese human subjects and ob/ob and high fat–fed mice. Diabetes, 60: 2598–2607.]Search in Google Scholar
[Anderson R.C., Cookson A.L., McNabb W.C., Kelly W.J., Roy N.C. (2010). Lactobacillus plantarum DSM 2648 is a potential probiotic that enhances intestinal barrier function. FEMS Microbiol. Lett., 309: 184–192.]Search in Google Scholar
[Argenzio R.A., Lecce J., Powell D.W. (1993). Prostanoids inhibit intestinal NaCl absorption in experimental porcine cryptosporidiosis. Gastroenterology, 104: 440–447.]Search in Google Scholar
[Arnott I.D.R., Kingstone K., Ghosh G. (2000). Abnormal intestinal permeability predicts relapse in inactive Crohn disease. Scand. J. Gastroenterol., 35: 1163–1169.]Search in Google Scholar
[Barman N.N., Bianchi A.T.J., Zwart R.J., Pabst R., Rothkötter H.J. (1996). Jejunal and ileal Peyer’s patches in pigs differ in their postnatal development. Anat. Embryol., 195: 41–50.]Search in Google Scholar
[Barmeyer C., Schulzke J.D., Fromm M. (2015). Claudin-related intestinal diseases. Semin Cell Dev. Biol., 42: 30–38.]Search in Google Scholar
[Barwick K.W. (1986). Modern concepts of gastrointestinal histology. J. Clinic. Gastroenterol., 8: 1–793.]Search in Google Scholar
[Bass L.M., Wershil B.K. (2015). Anatomy, histology, embryology, and developmental anomalies of the small and large intestine. In: Sleisenger and Fordtran’s Gastrointestinal and Liver Disease: Pathophysiology, Diagnosis, Management. Amsterdam: Elsevier, pp. 1649–1678.]Search in Google Scholar
[Baum B., Georgiou M. (2011). Dynamics of adherens junctions in epithelial establishment, maintenance, and remodeling. J. Cell Biol., 192: 907–917.]Search in Google Scholar
[Bendixen E., Danielsen M., Larsen K., Bendixen C. (2010). Advances in porcine genomics and proteomics – a toolbox for developing the pig as a model organism for molecular biomedical research. Brief. Funct. Genom., 9: 208–219.]Search in Google Scholar
[Bertiaux-Vandaële N., Youmba S.B., Belmonte L., Lecleire S., Antonietti M., Gourcerol G., Leroi A.M., Déchelotte P., Ménard J.F., Ducrotté P., Coëffier M. (2011). The expression and the cellular distribution of the tight junction proteins are altered in irritable bowel syndrome patients with differences according to the disease subtype. Am. J. Gastroenterol., 106: 2165–2173.]Search in Google Scholar
[Bevins C.L. (2006). Paneth cell defensins: Key effector molecules of innate immunity. Biochem. Soc. Trans., 34: 263–266.]Search in Google Scholar
[Bevins C.L., Salzman N.H. (2011). Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat. Rev. Micro-biol., 9: 356–368.]Search in Google Scholar
[Bikhazi A.B., Skoury M.M., Zwainy D.S., Jurjus A.R., Kreydiyyeh S.I., Smith D.E., Audette K., Jacques D. (2004). Effect of diabetes mellitus and insulin on the regulation of the PepT 1 symporter in rat jejunum. Mol. Pharmac., 1: 300–308.]Search in Google Scholar
[Bischoff S.C., Barbara G., Buurman W., Ockhuizen T., Schulzke J-D., Serino M., Tilg H., Watson A., Wells J.M. (2014). Intestinal permeability – a new target for disease prevention and therapy. BMC Gastroenterol., 14: 189.]Search in Google Scholar
[Boudry G., Yang P-C., Perdue M.H. (2004). Small intestine; Anatomy. In: Encyclop. Gastroenterol., pp. 482–486.]Search in Google Scholar
[British Pharmacopoeia (2009). The stationary office on behalf of the medicines and healthcare products Regulatory Agency. London, UK, 669.]Search in Google Scholar
[Brunsgaard G. (1997). Morphological characteristics, epithelial cell proliferation, and crypt fission in cecum and colon of growing pigs. Dig. Dis. Sci., 42: 2384–2393.]Search in Google Scholar
[Campbell J., Berry J., Liang Y. (2019). Anatomy and physiology of the small intestine. In: Shackelford’s Surgery of the Alimentary Tract: 2 Vol. Set., 1: 817–841.]Search in Google Scholar
[Cani P.D., Knauf C. (2021). A newly identified protein from Akkermansia muciniphila stimulates GLP-1 secretion. Cell Metabolism, 33: 1073–1075.]Search in Google Scholar
[Chassaing B., Ley R.E., Gewirtz A.T. (2014). Intestinal epithelial cell toll-like receptor 5 regulates the intestinal microbiota to prevent low-grade inflammation and metabolic syndrome in mice. Gastroenterology, 147: 1363–77.e17.]Search in Google Scholar
[Chelakkot C., Ghim J., Ryu S.H. (2018). Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp. Mol. Med., 50: 1–9.]Search in Google Scholar
[Chu R.M., Liu C.H. (1984). Morphological and functional comparisons of Peyer’s patches in different parts of the swine small intestine. Vet. Immunol. Immunopathol., 6: 391–403.]Search in Google Scholar
[Corazziari S.E. (2009). Intestinal mucus barrier in normal and inflamed colon. J. Pediatric Gastroenterol. Nutr., 48, Suppl. 2: S54–55.]Search in Google Scholar
[Cortés-Rojas D.F., Fernandes de Souza C.R., Oliveira W.P. (2014). Clove (Syzygium aromaticum): a precious spice. Asian Pac. J. Trop. Biomed., 4: 90–96.]Search in Google Scholar
[De Vos W.M., Tilg H., Van Hul M., Cani P.D. (2022). Gut microbiome and health: mechanistic insights. Gut, 71: 1020–1032.]Search in Google Scholar
[Den Besten G., Van Eunen K., Groen A.K., Venema K., Reijngoud D.J., Bakker B.M. (2013). The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res., 54: 2325–2340.]Search in Google Scholar
[Derebecka N., Kania M., Baraniak J. (2012). Liść orzecha włoskiego (Juglandis folium) – działanie przeciwdrobnoustrojowe oraz bezpieczeństwo stosowania w chorobach skórnych (in Polish). Post. Fitoter., 3: 197–202.]Search in Google Scholar
[D’Souza V.M. (2003). Functional and molecular regulation of the intestinal oligopeptide transporter PepT-1 by extracellular glucose in vitro. University of Cincinnati.]Search in Google Scholar
[Dzięgiel N., Szczurek P., Jura J., Pieszka M. (2018). Świnia jako zwierzę modelowe w translacyjnych badaniach biomedycznych. Post. Hig. Med. Doświadcz., 72: 1032–1042.]Search in Google Scholar
[Edelblum K.L., Turner J.R. (2009). The tight junction in inflammatory disease: communication breakdown. Curr. Opin. Pharmacol., 9: 715–720.]Search in Google Scholar
[Engelsmann M.N., Nielsen T.S., Hedemann M.S., Krogh U., Nørgaard J.V. (2023). Effect of postweaning feed intake on performance, intestinal morphology, and the probability of diarrhoea in piglets. Animal, 17: 100891.]Search in Google Scholar
[Ermund A., Schütte A., Johansson M.E.V., Gustafsson J.K., Hansson G.C. (2013). Studies of mucus in mouse stomach, small intestine, and colon. I. Gastrointestinal mucus layers have different properties depending on location as well as over the Peyer’s patches. Am. J. Physiol. – Gastrointest. Liver Physiol., 305: G341–G347.]Search in Google Scholar
[Ferraris R.P., Diamond J. (1997). Regulation of intestinal sugar transport. Physiol. Rev., 77: 257–302.]Search in Google Scholar
[Fournier K.M., González M.I., Robinson M.B. (2004). Rapid trafficking of the neuronal glutamate transporter, EAAC1: evidence for distinct trafficking pathways differentially regulated by protein kinase C and platelet-derived growth factor. J. Biol. Chem., 279: 34505–34513.]Search in Google Scholar
[Fristrom D. (1988). The cellular basis of epithelial morphogenesis. A review. Tissue Cell, 20: 645–690.]Search in Google Scholar
[Furukawa M., Ito S., Suzuki S., Fuchimoto D., Onishi A., Niimi K., Usami K., Wu G., Bazer F.W., Ogasawara K., Watanabe K., Aso H., Nochi T. (2020). Organogenesis of ileal Peyer’s patches is initiated prenatally and accelerated postnatally with comprehensive proliferation of B cells in pigs. Front. Immunol., 11.]Search in Google Scholar
[Furuse M., Hirase T., Itoh M., Nagafuchi A., Yonemura S., Tsukita S., Tsukita S. (1993). Occludin: a novel integral membrane protein localizing at tight junctions. J. Cell Biol., 123: 1777–1788.]Search in Google Scholar
[Furuse M., Fujita K., Hiiragi T., Fujimoto K., Tsukita S. (1998). Claudin-1 and -2: Novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J. Cell Biol., 141: 1539–1550.]Search in Google Scholar
[Gareau M.G., Wine E., Sherman P.M. (2009). Early life stress induces both acute and chronic colonic barrier dysfunction. NeoRev., 10: 191–197.]Search in Google Scholar
[Gasbarrini G., Montalto M. (1999). Structure and function of tight junctions. Role in intestinal barrier. Ital. J. Gastroenterol. Hepatol., 31: 481–488.]Search in Google Scholar
[Gassler N. (2017). Paneth cells in intestinal physiology and patho-physiology. World J. Gastrointest. Pathophysiol., 8: 150–160.]Search in Google Scholar
[Gieling E.T., Schuurman T., Nordquist R.E., van der Staay F.J. (2011). The pig as a model animal for studying cognition and neurobehavioral disorders. Curr. Top. Behav. Neurosci., 7: 359–383.]Search in Google Scholar
[González-Mariscal L., Betanzos A., Nava P., Jaramillo B.E. (2003). Tight junction proteins. Prog. Biophys. Mol. Biol., 81: 1–44.]Search in Google Scholar
[Gorboulev V., Schürmann A., Vallo V., Kipp H., Jaschke A., Klessen D., Koepsell H. (2012). Na+-D-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes, 61: 187–196.]Search in Google Scholar
[Gresse R., Chaucheyras-Durand F., Fleury M.A., Van de Wiele T., Forano E., Blanquet-Diot S. (2017). Gut microbiota dysbiosis in postweaning piglets: Understanding the keys to health. Trends Microbiol., 25: 851–873.]Search in Google Scholar
[Halliwell B.(2002). Vitamin E and the treatment and prevention of diabetes: a case for a controlled clinical trail. Singapore Med. J., 43: 479–484.]Search in Google Scholar
[Hampson D.J. (1986). Alterations in piglet small intestinal structure at weaning. Res. J. Vet. Sci., 40: 32–40.]Search in Google Scholar
[Hartstra A.V., Bouter K.E., Bäckhed F., Nieuwdorp M. (2015). Insights into the role of the microbiome in obesity and type 2 diabetes. Diabet. Care, 38: 159–165.]Search in Google Scholar
[Hasani A., Ebrahimzadeh S., Hemmati F., Khabbaz A., Hasani A., Gholizadeh P. (2021). The role of Akkermansia muciniphila in obesity, diabetes and atherosclerosis. J. Med. Microbiol., 70.]Search in Google Scholar
[Helander H.F., Fandriks L. (2014). Surface area of the digestive tract – revisited. Scandinavian J. Gastroenterol., 49: 681–689.]Search in Google Scholar
[Hessels J., Snoeyink E.J.M., Platenkamp A.J., Voortman G., Steggink J., Eidhof H.H.M. (2003). Assessment of intestinal permeability: enzymatic determination of urinary mannitol, raffinose, sucrose and lactose on Hitachi analyzer. Clin. Chem. Lab. Med., 41: 33–43.]Search in Google Scholar
[Hill C., Guarner F., Reid G., Gibson G.R., Merenstein D.J., Pot B., Morelli L., Canani R.B., Flint H.J., Salminen S. (2014). Expert consensus document. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol., 11: 506–514.]Search in Google Scholar
[Holowacz S., Blondeau C., Guinobert I., Guilbot A., Bardot V. (2016). Anti-diarrheal and anti-nociceptive effects of a hydroethanolic leaf extract of walnut in rats. Med. Aromat. Plants, 5: 1000268.]Search in Google Scholar
[Horowitz A., Chanez-Paredes S.D., Haest X., Turner J.R. (2023). Para-cellular permeability and tight junction regulation in gut health and disease. Nat. Rev. Gastroenterol. Hepatol., 20: 417–432.]Search in Google Scholar
[Hussain M.M. (2014). Intestinal lipid absorption and lipoprotein formation. Curr. Opin. Lipidol., 25: 200–206.]Search in Google Scholar
[Ibrahim Z., Busch J., Awwad M., Wagner R., Wells K., Cooper D.K. (2006). Selected physiologic compatibilities and incompatibilities between human and porcine organ systems. Xenotransplantation, 13: 488–499.]Search in Google Scholar
[Ikenouchi J., Furuse M., Furuse K., Sasaki H., Tsukita S., Tsukita S. (2005). Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J. Cell Biol., 171: 939–945.]Search in Google Scholar
[Isolauri E., Joensuu J., Suomalainen H., Luomala M., Vesikari T. (1995). Improved immunogenicity of oral D × RRV reassortant rotavirus vaccine by Lactobacillus casei GG. Vaccine, 13: 310–312.]Search in Google Scholar
[Itza-Ortiz M., Segura-Correa J., Parra-Suescún J., Aguilar-Urquizo E. Escobar-Gordillo N. (2019). Correlation between body weight and intestinal villi morphology in finishing pigs. Acta Universit., 29: 1–4.]Search in Google Scholar
[Jensen-Jarolim E., Gajdzik L., Haberl I., Kraft D., Scheiner O., Graf J. (1998). Hot spices influence permeability of human intestinal epithelial monolayers. Nutr. J., 128: 577–581.]Search in Google Scholar
[Ji F.J., Wang L.X., Yang H.S., Hu A., Yin Y.L. (2019). Review: The roles and functions of glutamine on intestinal health and performance of weaning pigs. Animal, 13: 2727–2735.]Search in Google Scholar
[Jørgensen J.R., Elsborg L. (1996). Measurement of intestinal permeability. Ugeskr Laeger, 10: 1358–1361.]Search in Google Scholar
[Kaczmarczyk M., Szulińska M., Łoniewski I., Kręgielska-Narożna M., Skonieczna-Żydecka K., Kosciolek T., Bezshapkin V., Bogdański P. (2022). Treatment with multi-species probiotics changes the functions, not the composition of gut microbiota in postmenopausal women with obesity: a randomized, double-blind, placebo-controlled study. Front. Cell Infect. Microbiol., 12: 815798.]Search in Google Scholar
[Kalach N., Rocchiccioli F., de Boissieu D., Benhamou P.-H., Dupont C. (2001). Intestinal permeability in children: variation with age and reliability in the diagnosis. Acta Paediatr., 90: 499–504.]Search in Google Scholar
[Kansagra K., Stoll B., Rognerud C., Niinikoski H., Ou C.-N., Harvey R., Burrin D. (2003). Total parenteral nutrition adversely affects gut barrier function in neonatal piglets. Am. J. Physiol., 285: G1162–G1170.]Search in Google Scholar
[Kellett G.L., Helliwell P.A. (2000). The diffusive component of intestinal glucose absorption is mediated by the glucose-induced recruitment of GLUT2 to the brush-border membrane. Biochem. J., 350: 155–162.]Search in Google Scholar
[Kellett G.L., Brot-Laroche E., Mace O.J., Leturque A. (2008). Sugar absorption in the intestine: the role of GLUT2. Ann. Rev. Nutr., 28: 35–54.]Search in Google Scholar
[Kirk A.D. (2003). Crossing the bridge: large animal models in translational transplantation research. Immunol. Rev., 196: 176–196.]Search in Google Scholar
[Kitajiri S., Katsuno T., Sasaki H., Ito J., Furuse M., Tsukita S. (2014). Deafness in occludin-deficient mice with dislocation of tricellulin and progressive apoptosis of the hair cells. Biol. Open, 3: 759–766.]Search in Google Scholar
[Klimberg V.S., Souba W.W., Dolson D.J. (1990). Prophylactic gluta-mine protects the intestinal mucosa from radiation injury. Cancer, 66: 62–68.]Search in Google Scholar
[König J., Wells J., Cani P.D., García-Ródenas G.L., MacDonald T., Mercenier A., Whyte J., Troost F., Brummer R.-J. (2016). Human intestinal barrier function in health and disease. Clinic. Transl. Gastroenterol., 7: e196.]Search in Google Scholar
[Krause W.J. (2000). Brunner’s glands: a structural, histochemical and pathological profile. Prog. Histochem. Cytochem., 35: 259–367.]Search in Google Scholar
[Krumbeck J.A., Rasmussen H.E., Hutkins R.W., Clarke J., Shawron K., Keshavarzian A., Walter J. (2018). Probiotic Bifidobacterium strains and galactooligosaccharides improve intestinal barrier function in obese adults but show no synergism when used together as synbiotics. Microbiome, 6: 121.]Search in Google Scholar
[Kubica P., Kot-Wasik A., Wasik A., Namieśnik J., Landowski P. (2012). Modern approach for determination of lactulose, mannitol and sucrose in human urine using HPLC-MS/MS for the studies of intestinal and upper digestive tract permeability. J. Chromat. b-Analyt. Technol. Biomed. Life Sci., 907: 34–40.]Search in Google Scholar
[Laine T.M., Lyytikainen T., Yliaho M., Anttila M. (2008). Risk factors for post-weaning diarrhoea on piglet producing farms in Finland. Acta Vet. Scand., 50: 21–31.]Search in Google Scholar
[Lambert G.P. (2009). Stress-induced gastrointestinal barrier dysfunction and its inflammatory effects. J. Anim. Sci., 87: 101–108.]Search in Google Scholar
[Lee F.D. (1990). Gastrointestinal pathology. An. Atlas Text. J. Clinic. Pathol., 43: 521.]Search in Google Scholar
[Lee S.H. (2015). Intestinal permeability regulation by tight junction: implication on inflammatory bowel diseases. Intest. Res., 13: 11–18.]Search in Google Scholar
[Leibach F.H., Ganapathy V. (1996). Peptide transporters in the intestine and the kidney. Annu. Rev. Nutr., 16: 99–119.]Search in Google Scholar
[Liu F., Zhang H., Wu H., Yang S., Liu J., Wang J. (2023). The effects of indobufen on micro-inflammation and peritoneal transport function in patients undergoing continuous ambulate peritoneal dialysis: a prospective randomized controlled study. J. Pharmacol. Exp. Ther., 384: 296–305.]Search in Google Scholar
[Łoniewski I., Skonieczna-Żydecka K., Sołek-Pastuszka J., Marlicz W. (2022). Probiotics in the management of mental and gastrointestinal post-COVID symptoms. J. Clinic. Med., 11: 17.]Search in Google Scholar
[Łoniewski I., Szulińska M., Kaczmarczyk M., Podsiadło K., Styburski D., Skonieczna-Żydecka K., Bogdański P. (2023). Multispecies probiotic affects fecal short-chain fatty acids in postmenopausal women with obesity: A post hoc analysis of a randomized, double-blind, placebo-controlled study. Nutrition, 114: 112109.]Search in Google Scholar
[Loor J.L., Herbein J.H. (2001). Alterations in blood plasma and milk fatty acid profiles of lactating Holstein cows in response to ruminal infusion of a conjugated linoleic acid mixture. Anim. Res., 50: 463–476.]Search in Google Scholar
[Lu Z., Ding L., Lu Q., Chen Y.-H. (2013). Claudins in intestines. Tissue Barriers, 1: e24978.]Search in Google Scholar
[Lunney J.K. (2007). Advances in swine biomedical model genomics. Int. J. Biol. Sci., 3: 179.]Search in Google Scholar
[Ma T.Y., Nighot P., Al-Sadi R. (2018). Tight junctions and the intestinal barrier. In: Physiology of the gastrointestinal tract. Elsevier, pp. 587–639.]Search in Google Scholar
[Mace O.J., Lister N., Morgan E., Shepherd E., Affleck J., Helliwell P., Foley D. (2009). An energy supply network of nutrient absorption coordinated by calcium and T1R taste receptors in rat small intestine. J. Physiol., 587: 195–210.]Search in Google Scholar
[Maguire M., Maguire G. (2019). Gut dysbiosis, leaky gut, and intestinal epithelial proliferation in neurological disorders: Towards the development of a new therapeutic using amino acids, prebiotics, probiotics, and postbiotics. Rev. Neurosci., 30: 179–201.]Search in Google Scholar
[Martìn-Padura I., Lostaglio S., Schneemann M., Williams L., Romano M., Fruscella P., Panzeri C., Stoppacciaro A., Ruco L., Villa A., Simmon, D., Dejana E. (1998). Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J. Cell Biol., 142: 117–127.]Search in Google Scholar
[Marton L.T., de Alvares Goulart R., Alves de Carvalho A.C., Barbalho S.M. (2019). Omega fatty acids and inflammatory bowel diseases. Int. J. Mol. Sci., 20: 4851.]Search in Google Scholar
[May C.L., Kaestner K.H. (2010). Gut endocrine cell development. Mol. Cell. Endocrinol., 323: 70–75.]Search in Google Scholar
[McCarthy K.M., Skare I.B., Stankewich M.C., Furuse M., Tsukita S., Rogers R.A., Lynch R.D., Schneeberger E.E. (1996). Occludin is a functional component of the tight junction. J. Cell Sci., 109: 2287–2298.]Search in Google Scholar
[Meredith D. (2009). The mammalian proton-coupled peptide cotrans-porter PepT1: sitting on the transporter–channel fence. Philos. Trans. R. Soc. B: Biol. Sci., 364: 203–207.]Search in Google Scholar
[Moeser A.J., Klok C.V., Ryan K.A., Wooten J.G., Little D., Cook V.L., Blikslager A.T. (2007). Stress signaling pathways activated by weaning mediate intestinal dysfunction in the pig. Am. J. Physiol. Gastrointest. Liver. Physiol., 292: G173–G181.]Search in Google Scholar
[Moeser A.J., Pohl C.S., Rajput M. (2017). Weaning stress and gastro- intestinal barrier development: Implications for lifelong gut health in pigs. Anim. Nutr., 3: 313–321.]Search in Google Scholar
[Molino J.P., Donzele J.L., Oliveira R.F.M.D., Saraiva A., Haese D., Fortes E.I., Souza M.F.D. (2012). L-glutamine and L-glutamate in diets with different lactose levels for piglets weaned at 21 days of age. Revista Brasileira de Zootecnia, 41: 98–105.]Search in Google Scholar
[Moonwiriyakit A., Wattanaphichet P., Chatsudthiponga V., Muanprasata C. (2018). GPR40 receptor activation promotes tight junction assembly in airway epithelial cells via AMPK-dependent mechanisms. Tissue Barriers, 6: e1480741.]Search in Google Scholar
[Moonwiriyakit A., Pathomthongtaweechai N., Steinhagen P.R., Chantawichitwong P., Satianrapapong W., Pongkorpsakol P. (2023). Tight junctions: from molecules to gastrointestinal diseases. Tissue Barriers., 11: 2077620.]Search in Google Scholar
[Morita K., Sasaki H., Furuse M., Tsukita S. (1999). Endothelial claudin: Claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J. Cell Biol., 147: 185–194.]Search in Google Scholar
[Mosenthin R. (1998). Physiology of small and large intestine of swine. Asian-Austral. J. Anim. Sci., 11: 608–619.]Search in Google Scholar
[Oda H., Takeichi M. (2011). Structural and functional diversity of cadherin at the adherens junction. J. Cell Biol., 193: 1137–1146.]Search in Google Scholar
[Oshima T., Miwa H., Joh T. (2008). Changes in the expression of claudins in active ulcerative colitis. J. Gastrol. Hepatol. (Australia), 23: S146–S150.]Search in Google Scholar
[Pappenheimer J.R., Michel C.C. (2003). Role of villus microcirculation in intestinal absorption of glucose: coupling of epithelial with endothelial transport. J. Physiol., 553: 561–574.]Search in Google Scholar
[Pelaseyed T., Bergström J.H., Gustafsson J.K., Ermund A., Birchen-ough G.M.H., Schütte A., van der Post S., Svensson F., Rodríguez-Piñeiro A.M., Nyström E.E.L., Wising C., Johansson M.E.V., Hansson G.C. (2014). The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol. Rev., 260: 8–20.]Search in Google Scholar
[Petras R.E. (2013). Normal small intestine: anatomy, specimen dissection and histology relevant to pathological practice. In: Morson and Dawson’s gastrointestinal pathology, pp. 279–292.]Search in Google Scholar
[Plaza-Díaz J., Solís-Urra P., Rodríguez-Rodríguez F., Olivares-Arancibia J., Navarro-Oliveros M., Abadía-Molina F., Álvarez Mercado A.I. (2020). The gut barrier, intestinal microbiota, and liver disease: Molecular mechanisms and strategies to manage. Int. J. Mol. Sci., 21: 1–22.]Search in Google Scholar
[Plovier H., Everard A., Druart C., Depommier C., Van Hul M., Geurts L., Chilloux J., Ottman N., Duparc T., Lichtenstein L., Myridakis A., Delzenne N.M., Klievink J., Bhattacharjee A., van der Ark K.C.H., Aalvink S., Martinez O.L., Dumas M.E., Maiter D., Loumaye A., Hermans M.P., Thissen J.P., Belzer C., de Vos W.M., Cani P.D. (2017). A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med., 23: 107–113.]Search in Google Scholar
[Pluske J.R., Hampson D.J., Williams I.H. (1997). Factors influencing the structure and function of the small intestine in the weaned pig: A review. Livest. Prod. Sci., 51: 215–236.]Search in Google Scholar
[Porter E.M., Bevins C.L., Ghosh D., Ganz T. (2002). The multifaceted Paneth cell. Cell. Mol. Life Sci., 59: 156–170.]Search in Google Scholar
[Quigley E.M. (2016). Leaky gut – concept or clinical entity? Curr. Opin. Gastroenterol., 32: 74–79.]Search in Google Scholar
[Rezaei R., Knabe D.A., Tekwe C.D., Dahanayaka S., Eide S.J., Lovering S.L., Ficken M.D., Fielder S.E., Wu G. (2013). Dietary supplementation with monosodium glutamate is safe and improves growth performance in postweaning pigs. Amino Acids, 44: 911–923.]Search in Google Scholar
[Rindi G., Leiter A.B., Kopin A.S., Bordi C., Solcia E. (2004). The ‘normal’ endocrine cell of the gut: Changing concepts and new evidences. Ann. N.Y. Acad. Sci., 1014: 1–12.]Search in Google Scholar
[Romero S., Cotoner A., Camacho P., Bedmar C.M., Vicario M. (2015). The intestinal barrier function and its involvement in digestive disease. Rev. Esp. Enferm. Dig., 107: 686–696.]Search in Google Scholar
[Rothkötter H.J., Sowa E., Pabst R. (2002). The pig as a model of developmental immunology. Hum. Experim. Toxicol., 21: 533–536. Roura E., Koopmans S.J., Lallès J.P., Le Huerou-Luron I., de Jager N., SchuurmanT., Val-Laillet D. (2016). Critical review evaluating the pig as a model for human nutritional physiology. Nutr. Res. Rev., 29: 60–90.]Search in Google Scholar
[Saitou M., Furuse M., Sasaki H., Schulzke J.D., Fromm M., Takano H., Noda T., Tsukita S. (2000). Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol. Biol. Cell, 11: 4131–4142.]Search in Google Scholar
[Salminen S., Isolauri E., Salminen E. (1996). Clinical uses of probiotics for stabilizing the gut mucosal barrier: successful strains and future challenges. Antonie Van Leeuwenhoek, 70: 347–358. Salminen S., Collado M.C., Endo A., Hill C., Lebeer S., Quigley E.M.,]Search in Google Scholar
[Sanders M.E., Shamir R., Swann J.R., Szajewska H., Vinderola G. (2021). The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nature Rev. Gastroenterol. Hepatol., 18: 649–667.]Search in Google Scholar
[Samuelsen A.B. (2000). The traditional uses, chemical constituents and biological activities of Plantago major L. A review. J. Ethnopharmacol., 71: 1–21.]Search in Google Scholar
[Sanders M.E., Merenstein D.J., Reid G., Gibson G.R., Rastall R.A. (2019). Probiotics and prebiotics in intestinal health and disease: From biology to the clinic. Nat. Rev. Gastroenterol. Hepatol., 16: 605–616.]Search in Google Scholar
[Schade C., Flemström G., Holm L. (1994). Hydrogen ion concentration in the mucus layer on top of acid-stimulated and -inhibited rat gastric mucosa. Gastroenterology, 107: 180–188.]Search in Google Scholar
[Schonhoff S.E., Giel-Moloney M., Leiter A.B. (2004). Minireview: Development and differentiation of gut endocrine cells. Endocrinology, 145: 2639–2644.]Search in Google Scholar
[Schoultz I., Keita Å.V. (2020). The intestinal barrier and current techniques for the assessment of gut permeability. Cells, 9: 1909.]Search in Google Scholar
[Scow J.S., Tavakkolizadeh A., Zheng Y., Sarr M.G. (2011). Acute “adaptation” by the small intestinal enterocyte: a post-transcriptional mechanism involving apical translocation of nutrient transporters. Surgery, 149: 601.]Search in Google Scholar
[Sequeira I.R., Kruger M.C., Hurst R.D., Lentle R.G. (2022). A simple, robust, and convenient HPLC assay for urinary lactulose and mannitol in the dual sugar absorption test. Molecules, 27: 2677.]Search in Google Scholar
[Shahrestani J.M., Das J. (2024). Neuroanatomy, StatPearls Publishing. PMID: 31855386.]Search in Google Scholar
[Shifflett D.E., Jones S.L., Moeser A.J., Blikslager A.T. (2004). Mitogen-activated protein kinases regulate COX-2 and mucosal recovery in ischemic-injured porcine ileum. Am. J. Physiol. Gastroin-test. Liver. Physiol., 286: 906–913.]Search in Google Scholar
[Shirazi-Beechey S.P., Moran A.W., Batchelor D.J., Daly K., Al-Rammahi M. (2011). Glucose sensing and signalling; regulation of intestinal glucose transport. Proceedings of the Nutrition Society, 70: 185–193.]Search in Google Scholar
[Soderholm A.T., Pedicord V.A. (2019). Intestinal epithelial cells: at the interface of the microbiota and mucosal immunity. Immunology, 158: 1–14.]Search in Google Scholar
[Spaeth G., Gottwald T., Haas W., Holmer M. (1993). Glutamine peptide does not improve gut barrier function and mucosal immunity in total parenteral nutrition. J. Parenter. Enteral. Nutr., 17: 317–323.]Search in Google Scholar
[Standring S. (2019). The anatomy of the small intestine. Springer Surgery Atlas Series, DOI:10.1007/978-3-030-05240-9_1]Search in Google Scholar
[Suvarna S.K., Layton C., Bancroft J.D. (2013). Theory and practice of histological techniques, Suvarna S.K., Layton C., Bancroft J.D. (eds). 7th Ed., Elsevier Churchill Livingstone, Londyn, Great Britain, pp. 1–603.]Search in Google Scholar
[Swindle M.M. (2016). Wound closure and integument. Swine in the laboratory. 3rd ed. Boca Raton: CRC Press, Taylor & Francis Group, pp. 89–104.]Search in Google Scholar
[Taha N.A., Al-Wadaan M.A. (2011). Utility and importance of walnut, Juglans regia Linn: A review. Afr. J. Microbiol. Res., 5: 5796–5805.]Search in Google Scholar
[Tsukita S., Furuse M., Itoh M. (2001). Multifunctional strands in tight junctions. Nat. Rev. Mol. Cell Biol., 2: 285–293.]Search in Google Scholar
[Turner J.R. (2009). Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol., 9: 799–809.]Search in Google Scholar
[Van Der Flier L.G., Clevers H. (2009). Stem cells, self-renewal, and differentiation in the intestinal epithelium. Ann. Rev. Physiol., 71: 241–260.]Search in Google Scholar
[Van Der Flier L.G., Van Gijn M.E., Hatzis P., Kujala P., Haegebarth A., Stange D.E., Begthel H., Van den Born M., Guryev V., Oving I., Van Es J.H., Barker N., Peters P.J., Van der Wetering M., Clevers H. (2009). Transcription factor achaete scute-like 2 controls intestinal stem cell fate. Cell, 136: 903–912.]Search in Google Scholar
[Van Itallie C.M., Anderson J.M. (2004). The molecular physiology of tight junction pores. Physiology, 19: 331–338.]Search in Google Scholar
[Vancamelbeke M., Vermeire S. (2017). The intestinal barrier: a fundamental role in health and disease. Expert. Rev. Gastroenterol. Hepatol., 11: 821–834.]Search in Google Scholar
[Vondruskova H., Slamova R., Trckova M., Zraly Z., Pavlik I. (2010). Alternatives to antibiotic growth promoters in prevention of diarrhoea in weaned piglets: a review. Veterinarni Med., 55: 199–224.]Search in Google Scholar
[Wang B., Xie N., Li B. (2019). Influence of peptide characteristics on their stability, intestinal transport, and in vitro bioavailability: A review. J. Food. Biochem., 43: e12571.]Search in Google Scholar
[Wang H., Zhang C., Wu G., Sun Y., Wang B., He B., Dai Z., Wu Z. (2014). Glutamine enhances tight junction protein expression and modulates corticotropin-releasing factor signaling in the jejunum of weanling piglets. J. Nutr., 145: 25–31.]Search in Google Scholar
[Wasilewska Z., Dolińska A., Wilczyńska D., Szaflarska-Popławska A., Krogulska A. (2019). Prevalence of allergic diseases in children with inflammatory bowel disease. Adv. Dermatol. Allergol., 36: 286–294.]Search in Google Scholar
[Westerbeek E.A.M., Van den Berg A., Lafeber H.N., Fetter W.P.F., Van Elburg R.M. (2011). The effect of enteral supplementation of a prebiotic mixture of non-human milk galacto, fructo- and acidic oligosaccharides on intestinal permeability in preterm infants. Brit. J. Nutr., 105: 268–274.]Search in Google Scholar
[Wiese F., Simon O., Weyrauch K.D. (2003). Morphology of the small intestine of weaned piglets and a novel method for morphometric evaluation. J. Vet. Med., Ser. C: Anatom. Histol. Embryol., 32: 102–109.]Search in Google Scholar
[Woliński J., Słupecka M., Weström B., Prykhodko O., Ochniewicz P., Arciszewski M., Ekblad E., Szwiec K., Ushakova G., Skibo G., Kovalenko T., Osadchenko I., Goncharova K., Botermans .J, Pierzynowski S. (2012). Effects of feeding colostrum versus exogenous immunoglobulin G on gastrointestinal structure and enteric nervous system in newborn pigs. J. Anim. Sci., 90:327–330.]Search in Google Scholar
[Xiong X., Tan B., Song M., Ji P., Kim K., Yin Y., Liu Y. (2019). Nutritional intervention for the intestinal development and health of weaned pigs. Front. Vet. Sci., 6: 46.]Search in Google Scholar
[Yang H., Xiong X., Yin Y. (2013). Development and renewal of intestinal villi in pigs (Chapter 3). In: Nutritional and physiological functions of amino acids in pigs, Blachier F., et al. (eds). pp. 30–47. doi:10.1111/nmo.13216]Open DOISearch in Google Scholar
[Zhang M., Wu C. (2020). The relationship between intestinal goblet cells and the immune response. Biosci. Rep., 40: BSR20201471. Zheng Y., Sarr M.G. (2012). Translocation of transfected GLUT2 to the apical membrane in rat intestinal IEC-6 cells. Dig. Dis. Sci., 57: 1203–1212.]Search in Google Scholar
[Zhu M., Li H., Wu Y., An Y., Wang Y., Ye C., Zhang D., Ma R., Wang X., Shao X., Guo X. Qi X. (2021). Brunner’s gland hamartoma of the duodenum: A literature review. Adv. Thet., 38: 2779–2794.]Search in Google Scholar
[Ziegler A.L., Blikslager A.T. (2017). Impaired intestinal barrier function and relapsing digestive disease: lessons from a porcine model of early life stress. Neurogastroenterol. Motil., 29: 1–4.]Search in Google Scholar