Accesso libero

The Nutritional Value of Grasshoppers and Locusts – A Review

 e   
24 apr 2025
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Adámková A., Mlček J., Adámek M., Borkovcová M., Bednářová M., Hlobilová V., Knížková I., Juríková T. (2020). Tenebrio molitor (Coleoptera: Tenebrionidae) – Optimization of rearing conditions to obtain desired nutritional values. J. Insect Sci., 20: 24.Search in Google Scholar

Ademolu K., Idowu A., Olatunde G. (2010). Nutritional value assessment of variegated grasshopper, Zonocerus variegatus (L.) (Acridoidea: Pygomorphidae), during post-embryonic development. Afr. Entomol., 18: 360–364.Search in Google Scholar

Ahmad R.S., Imran A., Hussain M.B. (2018). Nutritional composition of meat. Meat Sci. Nutr., 61.Search in Google Scholar

Ahmed I., Fatma İ., Roshan R. (2022). Insects usage in pets food. Vet. Hekimler Derneği Dergisi, 93: 87–98.Search in Google Scholar

Akhtar Y., Isman M.B. (2018). Insects as an alternative protein source. In: Proteins in Food Processing. Elsevier.Search in Google Scholar

Alagawany M., Elnesr S.S., Farag M.R., El-Sabrout K., Alqaisi O., Dawood M.A., Soomro H., Abdelnour S.A. (2022). Nutritional significance and health benefits of omega-3,-6 and-9 fatty acids in animals. Anim. Biotechnol., 33: 1678–1690.Search in Google Scholar

Alegbeleye W.O., Obasa S.O., Olude O.O., Otubu K., Jimoh W. (2012). Preliminary evaluation of the nutritive value of the variegated grasshopper (Zonocerus variegatus L.) for African catfish Clarias gariepinus (Burchell. 1822) fingerlings. Aquacult. Res., 43: 412–420.Search in Google Scholar

Alexander P., Rounsevell M.D., Dislich C., Dodson J.R., Engström K., Moran D. (2015). Drivers for global agricultural land use change: The nexus of diet, population, yield and bioenergy. Global Environ. Change, 35: 138–147.Search in Google Scholar

Amobi M., Saleh A., Okpoko V., Abdullahi A. (2020). Growth performance of broiler chickens based on grasshopper meal inclusions in feed formulation. Zoologist, 18: 39–43.Search in Google Scholar

Arshad M.S. (2018). Meat Science and Nutrition. IntechOpen. Babayi H., Olayemi I.K., Fadipe L.A., Baba M.B., Sadiku J.O. (2018). Mineral nutrient profile of grasshopper (Zonocerus variegatus) subjected to different conventional post-harvest processing techniques, IJABR, 9: 152–165.Search in Google Scholar

Baker M.A., Shin J.T., Kim Y.W. (2016). An exploration and investigation of edible insect consumption: The impacts of image and description on risk perceptions and purchase intent. Psychol. Market., 33: 94–112.Search in Google Scholar

Belluco S., Losasso C., Maggioletti M., Alonzi C.C., Paoletti M.G., Ricci A. (2013). Edible insects in a food safety and nutritional perspective: a critical review. Comp. Rev. Food Sci. Food Safety, 12: 296–313.Search in Google Scholar

Blásquez J.R.-E., Moreno J.M.P., Camacho V.H.M. (2012). Could grasshoppers be a nutritive meal Food Nutr. Sci., 3: 164–175.Search in Google Scholar

Boulos S., Tännler A., Nyström L. (2020). Nitrogen-to-protein conversion factors for edible insects on the Swiss market: T. molitor, A. domesticus, and L. migratoria. Front. Nutr., 7: 89.Search in Google Scholar

Brogan E.N. (2018) Protein and lipid characterization of Acheta domesticus, Bombyx mori, and Locusta migratoria dry flours. West Virginia University.Search in Google Scholar

Brogan E.N., Park Y.-L., Matak K.E., Jaczynski J. (2021). Characterization of protein in cricket (Acheta domesticus), locust (Locusta migratoria), and silk worm pupae (Bombyx mori) insect powders. LWT, 152: 112314.Search in Google Scholar

Cao H., Luo Q., Wang H., Liu Z., Li G., Liu J. (2019). Structural characterization of peptides from Locusta migratoria manilensis (Meyen, 1835) and anti-aging effect in Caenorhabditis elegans. RSC Adv., 9: 9289–9300.Search in Google Scholar

Cerritos R. (2011). Grasshoppers in agrosystems: pest or food? CABI Rev., 6.Search in Google Scholar

Cerritos-Flores R., Ponce-Reyes R., Rojas-García F. (2015). Exploiting a pest insect species Sphenarium purpurascens for human consumption: Ecological, social, and economic repercussions. J. Insects Food Feed, 1: 75–84.Search in Google Scholar

Cheseto X., Kuate S.P., Tchouassi D.P., Ndung’u M., Teal P.E., Torto B. (2015). Potential of the desert locust Schistocerca gregaria (Orthoptera: Acrididae) as an unconventional source of dietary and therapeutic sterols. PLoS One, 10: e0127171.Search in Google Scholar

Clarkson C., Mirosa M., Birch J. (2018). Potential of extracted Locusta migratoria protein fractions as value-added ingredients. Insects, 9: 20.Search in Google Scholar

Costa-Neto E.M., Dunkel F. (2016). Insects as food: history, culture, and modern use around the world. Insects as sustainable food ingredients. Elsevier.Search in Google Scholar

Cruz-López S.O., Álvarez-Cisneros Y.M., Domínguez-Soberanes J., Escalona-Buendía H.B., Sánchez C.N. (2022). Physicochemical and sensory characteristics of sausages made with grasshopper (Sphenarium purpurascens) flour. Foods, 11: 704.Search in Google Scholar

Cuj-Laines R., Hernández-Santos B., Reyes-Jaquez D., Delgado-Licon E., Juárez-Barrientos J.M., Rodríguez-Miranda J. (2018). Physicochemical properties of ready-to-eat extruded nixtamalized maize-based snacks enriched with grasshopper. Int. J. Food Sci. Technol., 53: 1889–1895.Search in Google Scholar

Das M., Mandal S.K. (2014). Oxya hyla hyla (Orthoptera: Acrididae) as an alternative protein source for Japanese quail. Int. Scholar. Res. Not., 2014.Search in Google Scholar

Dewi T., Vidiarti A., Fitranti D., Kurniawati D., Anjani G. (2020). Formulation of baby biscuits with substitution of wood grasshopper flour (Melanoplus cinereus) as an alternative complementary food for children. Food Res., 4: 114–122.Search in Google Scholar

Dorgbetor I.K., Ondrasek G., Kutnjak H., Mikuš O. (2022). What if the world went vegan? A review of the impact on natural resources, climate change, and economies. Agriculture, 12: 1518.Search in Google Scholar

Dreassi E., Cito A., Zanfini A., Materozzi L., Botta M., Francardi V. (2017). Dietary fatty acids influence the growth and fatty acid composition of the yellow mealworm Tenebrio molitor (Coleoptera: Tenebrionidae). Lipids, 52: 285–294.Search in Google Scholar

European Commission (2022). Delivering the European Green Deal – Striving to be the first climate-neutral continent.Search in Google Scholar

Evans J., Alemu M.H., Flore R., Frøst M.B., Halloran A., Jensen A.B., Maciel-Vergara G., Meyer-Rochow V.B., Münke-Svendsen C., Olsen S.B. (2015). ‘Entomophagy’: an evolving terminology in need of review. J. Insects Food Feed, 1: 293–305.Search in Google Scholar

FAO (2019). Government of Kenya. Kenya Food Composition Tables, 2018. Nairobi, Kenya,: Kenya Food Composition Food & Agriculture Organization.Search in Google Scholar

FAOLEX Database (2019). FAO: Insect Industry Promotion and Support Act. 19-02-2020 ed.Search in Google Scholar

Finke M.D. (2002). Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biol., 21: 269–285.Search in Google Scholar

Finke M., Ooninex D. (2014). Insects as food for insectivores: In: Mass Production of Beneficial Organisms, Invertebrates and Entomo-pathogens, Morales-Ramos J.A., Rojas M.G., Shapiro-llan D.I. (eds). San Diego, CA, USA, Academic Press.Search in Google Scholar

Finke M.D., DeFoliart G.R., Benevenga N.J. (1989). Use of a four-parameter logistic model to evaluate the quality of the protein from three insect species when fed to rats. J. Nutr., 119: 864–871.Search in Google Scholar

Fombong F.T., Van Der Borght M., Vanden Broeck J. (2017). Influence of freeze-drying and oven-drying post blanching on the nutrient composition of the edible insect Ruspolia differens. Insects, 8: 102.Search in Google Scholar

Fombong F.T., Kinyuru J., Ng’ang’a J., Ayieko M., Tanga C.M., Vanden Broeck J., Van Der Borght M. (2021). Affordable processing of edible orthopterans provides a highly nutritive source of food ingredients. Foods, 10: 144.Search in Google Scholar

Ghosh S., Mandal D.K. (2019). Nutritional evaluation of a short-horned grasshopper’ Oxya hyla hyla (Serville) meal as a substitute of fishmeal in the compound diets of rohu, Labeo rohita (Hamilton). J. Basic Appl. Zool., 80: 1–8.Search in Google Scholar

Gilbert B.M., Avenant-Oldewage A. (2018). Trace element biomineralisation in the carapace in male and female Argulus japonicus. Plos One, 13: e0197804.Search in Google Scholar

Gravel A., Doyen A. (2020). The use of edible insect proteins in food: Challenges and issues related to their functional properties. Innov. Food Sci. Emerg. Technol., 59: 102272.Search in Google Scholar

Guyomard H., Bouamra-Mechemache Z., Chatellier V., Delaby L., Détang-Dessendre C., Peyraud J.-L., Requillart V. (2021). Why and how to regulate animal production and consumption: The case of the European Union. Animal, 100283.Search in Google Scholar

Haber M., Mishyna M., Martinez J.I., Benjamin O. (2019). The influence of grasshopper (Schistocerca gregaria) powder enrichment on bread nutritional and sensorial properties. LWT, 115: 108395.Search in Google Scholar

Ibarra-Herrera C.C., Acosta-Estrada B., Chuck-Hernández C., Serra-no-Sandoval S.N., Guardado-Félix D., Pérez-Carrillo E. (2020). Nutritional content of edible grasshopper (Sphenarium purpurascens) fed on alfalfa (Medicago sativa) and maize (Zea mays). CyTA-J. Food, 18: 257–263.Search in Google Scholar

Jamroz D., Jakobsen K., Knudsen K.E.B., Wiliczkiewicz A., Orda J. (2002). Digestibility and energy value of non-starch polysaccharides in young chickens, ducks and geese, fed diets containing high amounts of barley. Comp. Biochem. Physiol. A: Mol. Integr. Physiol., 131: 657–668.Search in Google Scholar

Jha B., Leterme P. (2012). Feed ingredients differing in fermentable fibre and indigestible protein content affect fermentation metabolites and faecal nitrogen excretion in growing pigs. Animal, 6: 603–611.Search in Google Scholar

Jha R., Mishra P. (2021). Dietary fiber in poultry nutrition and their effects on nutrient utilization, performance, gut health, and on the environment: a review. J. Anim. Sci. Biotechnol., 12: 1–16.Search in Google Scholar

Jha R., Rossnagel B., Pieper R., Van Kessel A., Leterme P. (2010). Barley and oat cultivars with diverse carbohydrate composition alter ileal and total tract nutrient digestibility and fermentation metabolites in weaned piglets. Animal, 4: 724–731.Search in Google Scholar

Joseph S.M., Krishnamoorthy S., Paranthaman R., Moses J., Anandharamakrishnan C. (2021). A review on source-specific chemistry, functionality, and applications of chitin and chitosan. Carbohydr. Polym. Technol. Appl., 2: 100036.Search in Google Scholar

Kalala G., Kambashi B., Everaert N., Beckers Y., Richel A., Pachikian B., Neyrinck A.M., Delzenne N.M., Bindelle J. (2018). Characterization of fructans and dietary fibre profiles in raw and steamed vegetables. Int. J. Food Sci. Nutr., 69: 682–689.Search in Google Scholar

Kaya M., Lelešius E., Nagrockaitė R., Sargin I., Arslan G., Mol A., Baran T., Can E., Bitim B. (2015). Differentiations of chitin content and surface morphologies of chitins extracted from male and female grasshopper species. PloS One, 10: e0115531.Search in Google Scholar

Kelemu S., Niassy S., Torto B., Fiaboe K., Affognon H., Tonnang H., Maniania N., Ekesi S. (2015). African edible insects for food and feed: inventory, diversity, commonalities and contribution to food security. J. Insects Food Feed, 1: 103–119.Search in Google Scholar

Khalil R.M. (2013). Locust (Schistocerca gregaria) as an alternative source of protein compared with other conventional protein sources. Sudan University of Science and Technology.Search in Google Scholar

Kim J.W. (2019). Insect industry for future super foods. Food Sci. Anim. Res. Ind., 8: 74–77.Search in Google Scholar

Kinyuru J.N. (2021). Nutrient content and lipid characteristics of desert locust (Schistoscerca gregaria) swarm in Kenya. Int. J. Trop. Insect Sci., 41: 1993–1999.Search in Google Scholar

Kinyuru J.N., Kenji G., Muhoho S.N., Ayieko M. (2010). Nutritional potential of longhorn grasshopper (Ruspolia differens) consumed in Siaya district, Kenya. J. Agricult. Sci. Technol., 12: 32–46.Search in Google Scholar

Kipkoech C. (2023). Beyond proteins – edible insects as a source of dietary fiber. Polysaccharides, 4: 116–128.Search in Google Scholar

Kulma M., Tůmová V., Fialová A., Kouřimská L. (2020). Insect consumption in the Czech Republic: what the eye does not see, the heart does not grieve over. J. Insects Food Feed, 6: 525–535.Search in Google Scholar

Kulma M., Škvorová P., Petříčková D., Kouřimská L. (2023). A descriptive sensory evaluation of edible insects in Czechia: do the species and size matter? Int. J. Food Prop., 26: 218–230.Search in Google Scholar

Kuntadi K., Adalina Y., Maharani K.E. (2018). Nutritional compositions of six edible insects in Java. Indon. J. Fores. Res., 5: 57–68.Search in Google Scholar

Lawal K.G., Kavle R.R., Akanbi T.O., Mirosa M., Agyei D. (2021). Enrichment in specific fatty acids profile of Tenebrio molitor and Hermetia illucens larvae through feeding. Future Foods, 3: 100016.Search in Google Scholar

Legendre T.S., Baker M.A. (2022). Legitimizing edible insects for human consumption: The impacts of trust, risk–benefit, and purchase activism. J. Hospit. Tour. Res., 46: 467–489.Search in Google Scholar

Lehtovaara V., Valtonen A., Sorjonen J., Hiltunen M., Rutaro K., Malinga G., Nyeko P., Roininen H. (2017). The fatty acid contents of the edible grasshopper Ruspolia differens can be manipulated using artificial diets. J. Insects Food Feed, 3: 253–262.Search in Google Scholar

Lim S.M., Thien C.N., Toure A.K., Poh B.K. (2022). Factors influencing acceptance of grasshoppers and other insects as food: A comparison between two cities in Malaysia. Foods, 11: 3284.Search in Google Scholar

Mariod A.A., Mirghani M.E.S., Hussein I.H. (2017). Unconventional oilseeds and oil sources. Academic Press.Search in Google Scholar

Melo V., Garcia M., Sandoval H., Jiménez H.D., Calvo C. (2011). Quality proteins from edible indigenous insect food of Latin America and Asia. Emirates J. Food Agricult., 23: 283.Search in Google Scholar

Mishyna M., Martinez J.-J.I., Chen J., Benjamin O. (2019). Extraction, characterization and functional properties of soluble proteins from edible grasshopper (Schistocerca gregaria) and honey bee (Apis mellifera). Food Res. Int., 116: 697–706.Search in Google Scholar

Mitsuhashi J. (2016). Edible insects of the world. CRC Press. MOAFRA (2010). Control of Livestock and Fish Feed Act. South Korea.Search in Google Scholar

Nginya E., Ondiek J., King’ori A., Nduko J. (2019). Evaluation of grasshoppers as a protein source for improved indigenous chicken growers. Breast, 62: 0.45.Search in Google Scholar

Noyens I., Schoeters F., Van Peer M., Berrens S., Goossens S., Van Miert S. (2023). The nutritional profile, mineral content and heavy metal uptake of yellow mealworm reared with supplementation of agricultural sidestreams. Sci. Rep., 13: 11604.Search in Google Scholar

Ojha S., Bekhit A.E.-D., Grune T., Schlüter O.K. (2021). Bioavail-ability of nutrients from edible insects. Curr. Opin. Food Sci., 41: 240–248.Search in Google Scholar

Oonincx D., Finke M. (2021). Nutritional value of insects and ways to manipulate their composition. J. Insects Food Feed, 7: 639–659.Search in Google Scholar

Paul A., Frederich M., Uyttenbroeck R., Hatt S., Malik P., Lebecque S., Hamaidia M., Miazek K., Goffin D., Willems L. (2016). Grass-hoppers as a food source? A review. Biotechnol. Agronom. Soc. Environ., 20.Search in Google Scholar

Peng W., Ma N.L., Zhang D., Zhou Q., Yue X., Khoo S.C., Yang H., Guan R., Chen H., Zhang X. (2020). A review of historical and recent locust outbreaks: Links to global warming, food security and mitigation strategies. Environ. Res., 191: 110046.Search in Google Scholar

Pieper R., Jha R., Rossnagel B., Van Kessel A.G., Souffrant W.B., Leterme P. (2008). Effect of barley and oat cultivars with different carbohydrate compositions on the intestinal bacterial communities in weaned piglets. FEMS Microbiol. Ecol., 66: 556–566.Search in Google Scholar

Poma G., Cuykx M., Amato E., Calaprice C., Focant J.F., Covaci A. (2017). Evaluation of hazardous chemicals in edible insects and insect-based food intended for human consumption. Food Chem. Toxicol., 100: 70–79.Search in Google Scholar

Porusia M., Rauf R., Haryani F. (2020). Nutritional value of grasshopper and cricket cooked with different methods. Euras. J. Biosci., 14.Search in Google Scholar

Purschke B., Tanzmeister H., Meinlschmidt P., Baumgartner S., Lauter K., Jäger H. (2018). Recovery of soluble proteins from migratory locust (Locusta migratoria) and characterisation of their compositional and techno-functional properties. Food Res. Int., 106: 271–279.Search in Google Scholar

Raksakantong P., Meeso N., Kubola J., Siriamornpun S. (2010). Fatty acids and proximate composition of eight Thai edible terricolous insects. Food Res. Int., 43: 350–355.Search in Google Scholar

Reyes-Herrera A., Pérez-Carrillo E., Amador-Espejo G., Valdivia-Nájar G., Ibarra-Herrera C.C. (2022). Changes in the chemical composition of edible grasshoppers (Sphenarium purpurascens) fed exclusively with soy sprouts or maize leaves. Insects, 13: 510.Search in Google Scholar

Rodríguez-Miranda J., Alcántar-Vázquez J.P., Zúñiga-Marroquín T., Juárez-Barrientos J.M. (2019). Insects as an alternative source of protein: A review of the potential use of grasshopper (Sphenarium purpurascens Ch.) as a food ingredient. Europ. Food Res. Technol., 245: 2613–2620.Search in Google Scholar

Ruiz V.M., Sandoval-Trujillo H., Quirino-Barreda T., Sánchez-Herrera K., Díaz-García R., Calvo-Carrillo C. (2015). Chemical composition and amino acids content of five species of edible grasshoppers from Mexico. Emirates J. Food Agricult., 27: 654–658.Search in Google Scholar

Rumpold B.A., Schlüter O.K. (2013 a). Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res., 57: 802–823.Search in Google Scholar

Rumpold B.A., Schlüter O.K. (2013 b). Potential and challenges of insects as an innovative source for food and feed production. Innov. Food Sci. Emerg. Technol., 17: 1–11.Search in Google Scholar

Rutaro K., Malinga G.M., Lehtovaara V.J., Opoke R., Valtonen A., Kwetegyeka J., Nyeko P., Roininen H. (2018). The fatty acid composition of edible grasshopper Ruspolia differens (Serville) (Orthoptera: Tettigoniidae) feeding on diversifying diets of host plants. Entomol. Res., 48: 490–498.Search in Google Scholar

Salama S.M. (2020). Nutrient composition and bioactive components of the migratory locust (Locusta migratoria). African edible insects as alternative source of food, oil, protein and bioactive components. Springer.Search in Google Scholar

Sánchez-Muros M.-J., Barroso F.G., Manzano-Agugliaro F. (2014). Insect meal as renewable source of food for animal feeding: a review. J. Clean. Prod., 65: 16–27.Search in Google Scholar

Shabo E.P., Owaga E., Kinyuru J. (2022). Physico-chemical characterization, acceptability and shelf stability of extruded composite flour enriched with long-horned grasshopper (Ruspolia differens). J. Agricult. Sci. Technol., 21: 4–32.Search in Google Scholar

Shahidi F., Arachchi J.K.V., Jeon Y.-J. (1999). Food applications of chitin and chitosans. Trends Food Sci. Technol., 10: 37–51.Search in Google Scholar

Siddiqui S.A., Brunner T.A., Tamm I., van der Raad P., Patekar G., Bahmid N.A., Aarts K., Paul A. (2023). Insect-based dog and cat food: A short investigative review on market, claims and consumer perception. J. Asia-Pacific Entomol., 26: 102020.Search in Google Scholar

Siriamornpun S., Thammapat P. (2008). Insects as a delicacy and a nutritious food in Thailand. In: Using Food Science and Technology to Improve Nutrition and Promote National Development, 16: 16.Search in Google Scholar

Skotnicka M., Karwowska K., Kłobukowski F., Borkowska A., Pieszko M. (2021). Possibilities of the development of edible insect-based foods in Europe. Foods, 10: 766.Search in Google Scholar

Soetan K., Olaiya C., Oyewole O. (2010). The importance of mineral elements for humans, domestic animals and plants: A review. Afr. J. Food Sci., 4: 200–222.Search in Google Scholar

Ssepuuya G., Nakimbugwe D., De Winne A., Smets R., Claes J., Van Der Borght M. (2020). Effect of heat processing on the nutrient composition, colour, and volatile odour compounds of the long-horned grasshopper Ruspolia differens serville. Food Res. Int., 129: 108831.Search in Google Scholar

Stargrove M.B., Treasure J., McKee D. (2008). Herb, nutrient, and drug interactions. Missouri: Mosby Elsevier.Search in Google Scholar

Steinfeld H., Gerber P., Wassenaar T.D., Castel V., Rosales M., Rosales M., de Haan C. (2006) Livestock’s long shadow: environmental issues and options. Food and Agriculture Organization.Search in Google Scholar

Sun-Waterhouse D., Waterhouse G.I., You L., Zhang J., Liu Y., Ma L., Gao J., Dong Y. (2016). Transforming insect biomass into consumer wellness foods: A review. Food Res. Int., 89: 129–151.Search in Google Scholar

Tomiyama J.-M., Takagi D., Kantar M.B. (2020). The effect of acute and chronic food shortage on human population equilibrium in a subsistence setting. Agricult. Food Sec., 9: 1–12.Search in Google Scholar

Torruco-Uco J.G., Hernández-Santos B., Herman-Lara E., Martínez-Sánchez C.E., Juárez-Barrientos J.M., Rodríguez-Miranda J. (2019). Chemical, functional and thermal characterization, and fatty acid profile of the edible grasshopper (Sphenarium purpurascens Ch.). Europ. Food Res. Technol., 245: 285–292.Search in Google Scholar

van Dijk M., Morley T., Rau M.L., Saghai Y. (2021). A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nat. Food, 2: 494–501.Search in Google Scholar

Van Huis A. (2020). Insects as food and feed, a new emerging agricultural sector: a review. J. Insects Food Feed, 6: 27–44.Search in Google Scholar

Van Huis A., Van Itterbeeck J., Klunder H., Mertens E., Halloran A., Muir G., Vantomme P. (2013). Edible insects: future prospects for food and feed security. Food and Agriculture Organization of the United Nations.Search in Google Scholar

Varel V., Yen J.T. (1997). Microbial perspective on fiber utilization by swine. J. Anim. Sci., 75: 2715–2722.Search in Google Scholar

Virginia M.-R., Quirino-Barreda T., García-Núñez M., Díaz-García R., Sánchez-Herrera K., Schettino-Bermudez B. (2015). Grasshoppers Sphenarium purpurascens Ch. Source of proteins and essential amino acids. J. Chem. Chem. Eng., 9: 472–476.Search in Google Scholar

Wambui V., Nyambaka H., Kimiywe J., Tanga C. (2022). Processing techniques affects the vitamin quality of edible insects – potential for use in complementary foods. Int. Res. J. Pure Appl. Chem., 23: 35–46.Search in Google Scholar

Wood J., Enser M., Fisher A., Nute G., Sheard P., Richardson R., Hughes S., Whittington F. (2008). Fat deposition, fatty acid composition and meat quality: A review. Meat Sci., 78: 343–358.Search in Google Scholar

Wu G. (2009). Amino acids: metabolism, functions, and nutrition. Amino Acids, 37: 1–17.Search in Google Scholar

Wu G., Bazer F.W., Dai Z., Li D., Wang J., Wu Z. (2014). Amino acid nutrition in animals: protein synthesis and beyond. Ann. Rev. Anim. Biosci., 2: 387–417.Search in Google Scholar

Yhoung-Aree J. (2010). Edible insects in Thailand: nutritional values and health concerns. Edible Forest Insects, pp. 201–216.Search in Google Scholar

Zamudio-Flores P.B., Hernández-Gonzaléz M., García-Cano V. (2019). Food supplements from a grasshopper: A developmental stage-wise evaluation of amino acid profile, protein and vitamins in Brachystola magna (Girard). Emirates J. Food Agricult., pp. 561–568.Search in Google Scholar

Zielińska E., Baraniak B., Karaś M., Rybczyńska K., Jakubczyk A. (2015). Selected species of edible insects as a source of nutrient composition. Food Res. Int., 77: 460–466.Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Scienze biologiche, Biotecnologia, Zoologia, Medicina, Medicina veterinaria