INFORMAZIONI SU QUESTO ARTICOLO

Cita

Abu Bakar N.S., Mohd Nasi N., Lananan F., Abdul Hamid S.H., Lam S.S., Jusoh A. (2015). Optimization of C/N ratios for nutrient removal in aquaculture system culturing African catfish, (Clarias gariepinus) utilizing Bioflocs Technology. Int. Biodeterior. Biodegrad., 102: 100–106. Search in Google Scholar

Aghabarari M., Abdali S., Jourdehi A. (2021). The effect of Biofloc system on water quality, growth and hematological indices of Juvenile great sturgeon (Huso huso). Iran. J. Fish. Sci., 20: 1467–1482. Search in Google Scholar

Ahmad H., Verma A.K., Babitha Rani A.M., Rathore G., Saharan N., Gora A.H. (2016). Growth, non-specific immunity and disease resistance of Labeo rohita against Aeromonashydrophila in biofloc systems using different carbon sources. Aquaculture, 457: 61–67. Search in Google Scholar

Alcaraz G., Espina S. (1995). Nitrite median lethal concentration of juvenile, Ctenopharyngodon idella with respect to effect of fish weight and temperature. Bull. Environ. Contam. Toxicol., 55: 473–447. Search in Google Scholar

Alvarenga E.R. de, de Oliveira Alves G.F., Fernandes A.F.A., Costa G.R., da Silva M.A., de Alencar Teixeira E., Turra E.M. (2018). Moderate salinities enhance growth performance of Nile tilapia (Oreochromis niloticus) fingerlings in the biofloc system. Aquac. Res., 49: 2919–2926. Search in Google Scholar

Asaduzzaman M., Wahab M.A., Verdegem M.C.J., Huque S., Salam M.A., Azim M.E. (2008). C/N ratio control and substrate addition for periphyton development jointly enhance freshwater prawn Macrobrachium rosenbergii production in ponds. Aquaculture, 280: 117–123. Search in Google Scholar

Avnimelech Y., Ritvo G. (2003). Shrimp and fish pond soils processes and management. Aquaculture, 220: 549–567. Search in Google Scholar

Avnimelech Y. (1999). Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176: 227–235. Search in Google Scholar

Avnimelech Y. (2015). Biofloc technology – a practical guide book. In the world aquaculture society, 3rd ed., Baton Rouge, Louisiana, USA, pp. 21–73. Search in Google Scholar

Azhar M.H., Suciyono S., Budi D.S., Ulkhaq M.F., Anugrahwati M., Ekasari J. (2020). Biofloc-based co-culture systems of Nile tilapia (Oreochromis niloticus) and redclaw crayfish (Cherax quadricarinatus) with different carbon-nitrogen ratios. Aquac. Int., 28: 1293–1304. Search in Google Scholar

Azimi A., Shekarabi S.P.H., Paknejad H., Harsij M., Khorshidi Z., Zolfaghari M., Hatami A.S., Dawood M.A.O., Mazloumi N., Zakariaee H. (2022). Various carbon/nitrogen ratios in a biofloc-based rearing system of common carp (Cyprinus carpio) fingerlings: Effect on growth performance, immune response, and serum biochemistry. Aquaculture, 548: 737622. Search in Google Scholar

Aziz R., Oktaviana A. (2022). Application of carbon and nitrogen ratio in the Sangkuriang catfish culture Clarias gariepinus var in tarpaulin tanks. Proc. 2nd International Conference on Agriculture and Applied Science, 1012: 012017. Search in Google Scholar

Bai D., Li X., Liu Z., Wan L., Song C., Zhou Y., Cao X. (2023). Nitrogen and phosphorus turnover and coupling in ponds with different aquaculture species. Aquaculture, 563: 738997. Search in Google Scholar

Bakhshi F., Najdegerami E.H., Manaffar R., Tukmechi A., Farah K.R. (2018) Use of different carbon sources for the biofloc system during the grow-out culture of common carp (Cyprinus carpio L.) fingerlings. Aquaculture, 484: 259–267. Search in Google Scholar

Banerjee A., Paul D. (2021) Developments and applications of porous medium combustion: A recent review. Energy, 221: 119868. Search in Google Scholar

Beman J.M., Sachdeva R., Fuhrman J. (2010). Population ecology of nitrifying Archaea and Bacteria in the Southern California Bight. Environ. Microbiol., 12: 1282–1292. Search in Google Scholar

Bhattacharyyaa A., Ghosh S. (2023). Carbon-Nitrogen Ratios and performance of nile tilapia and stinging catfish in biofloc based juvenile rearing system. J. Surv. Fish. Sci., 10: 6942–6951. Search in Google Scholar

Bovendeur J. (1989). Fixed-biofilm reactors applied to waste water treatment and aquacultural water recirculating systems. PhD Thesis. Wageningen: Agricultural University. Search in Google Scholar

Boyd C.E., Tucker C.S. (2009). Pond aquaculture water quality management, Springer international editor, 700 pp. Search in Google Scholar

Boyd C.E. (1992). Water Quality for Aquaculture, Alabama Agricultural Experiment Station, Auburn University, Alabama, 33 pp. Search in Google Scholar

Bregnballe J. (2010). A guide to recirculation aquaculture: an introduction to the new environmentally friendly and highly productive closed fish farming systems. Publication of Food and Agriculture Organization of the United Nations (FAO) and EUROFISH International Organisation. Search in Google Scholar

Brune D.E., Schwartz G., Eversole A.G., Collier J.A., Schwedler T.E. (2003). Intensification of pond aquaculture and high rate photosynthetic systems. Aquac. Eng., 28: 65–86. Search in Google Scholar

Burford M.A., Thompson P.J., McIntosh R.P., Bauman R.H., Pearson D.C. (2004). The contribution of flocculated material to shrimp, Litopenaeus vannamei, nutrition in a high-intensity, zero-exchange system. Aquaculture, 232: 525–537. Search in Google Scholar

Cardona E., Gueguen Y., Magré K., Lorgeoux B., Piquemal D., Pierrat F. (2016). Bacterial community characterization of water and intestine of the shrimp Litopenaeus stylirostris in a biofloc system. BMC Microbiol., 16: 1–9. Search in Google Scholar

Cavalcante D., dos Santos Lima F.R., Tomaz Rebouças V., do Carmo e Sá M.V. (2016). Association between periphyton and bioflocs systems in intensive culture of juvenile Nile tilapia. Acta Scientiarum. Anim. Sci., 38: 119–125. Search in Google Scholar

Chakrapani S., Panigrahi A., Sundaresan J., Sivakumar M.R., Palanisamy R., Kumar V. (2021). Three different C: N ratios for Pacific white shrimp, Penaeus vannamei under practical conditions: Evaluation of growth performance, immune and metabolic pathways. Aquac. Res., 52: 1255–1266. Search in Google Scholar

Colt J. (2006). Water quality requirements for reuse systems. Aquac. Eng., 34: 143–156. Search in Google Scholar

Colt J.E., Armstrong D.A. (1981). Nitrogen toxicity to crustaceans, fish and mollusks. Proc. Bioengineering Symposium for Fish Culture, American Fisheries Society, Northeast Society of Conservation Engineers, Bethesda, pp. 34–47. Search in Google Scholar

Cowan D., Meyer Q., Stafford W., Muyanga S., Cameron R., Wittwer P. (2005). Metagenomic gene discovery: Past, present and future. Trends Biotechnol., 23: 321–329. Search in Google Scholar

Crab R., Chielens B., Wille M., Bossier P., Verstraete W. (2010). The effect of different carbon sources on the nutritional value of bioflocs, a feed for (Macrobrachium rosenbergii) postlarvae. Aquac. Res., 41: 559–567. Search in Google Scholar

Crab R., Defoirdt T., Bossier P., Verstraete W. (2012). Biofloc technology in aquaculture: beneficial effects and future challenges. Aquaculture, 357: 351–356. Search in Google Scholar

Craig S., Helfrich L.A. (2002). Understanding fish nutrition, feeds and feeding (Publication 420–256). Virginia Cooperative Extension, Yorktown (Virginia). 4 pp. Search in Google Scholar

Daims H., Lücker S., Wagner M. (2016). A new perspective on microbes formerly known as nitrite-oxidizing bacteria. Trends Biotechnol., 24: 699–712. Search in Google Scholar

Das S., Dash H.R. (2022). Editors. Microbial biodegradation and bioremediation. Elsevier, 617 pp. Search in Google Scholar

Dauda A.B., Ajadi A., Tola-Fabunmi A.S., Akinwole A.O. (2019). Waste production in aquaculture: Sources, components and managements in different culture systems. Aquac. Fish., 4: 81–88. Search in Google Scholar

Dauda A.B., Romano N., Ebrahimi M., Teh J.C., Ajadi A., Chong C.M., Karim M., Natrah I., Kamarudin M.S. (2018). Influence of carbon/nitrogen ratios on biofloc production and biochemical composition and subsequent effects on the growth, physiological status and disease resistance of African catfish (Clarias gariepinus) cultured in glycerol-based biofloc systems. Aquaculture, 483: 120–130. Search in Google Scholar

Delgadillo-Mirquez L., Lopes F., Taidi B., Pareau D. (2016). Nitrogen and phosphate removal from wastewater with a mixed microalgae and bacteria culture. Biotechnol. Rep., 11: 18–26. Search in Google Scholar

Deng M., Chen J., Gou J., Hou J., Li D., He X. (2018). The effect of different carbon sources on water quality, microbial community and structure of biofloc systems. Aquaculture, 482: 103–110. Search in Google Scholar

Dilmi A., Refes W., Meknachi A. (2022). Effects of C/N ratio on water quality, growth performance, digestive enzyme activity and antioxidant status of Nile tilapia Oreochromis niloticus (Linnaeus, 1758) in biofloc based culture system. Turk. J. Fish. Aqu. Sci., 22: 19754. Search in Google Scholar

Dvorak P. (2004). Selected specificity of aquarium fish disease. Bulletin VURH Vodnany 40, pp. 101–108. Search in Google Scholar

Ebeling J.M. (2013). Biofiltration-Nitrification: Design overview. Downloadable at https://www.slideshare.net/younesseven/biofiltration-nitrification-design-overview. (Accessed 2 July 2019). Search in Google Scholar

Ebeling J.M., Timmons M.B., Bisogni J. (2006). Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonianitrogen in aquaculture systems. Aquaculture, 257: 346–358. Search in Google Scholar

Ekasari J., Azhar M.H., Surawidjaja E.H., Sri Nuryati De Schryver P., Bossier P. (2014). Immune response and disease resistance of shrimp fed biofloc grown on different carbon sources. Fish Shellfish Immunol., 41: 332–339. Search in Google Scholar

El-Husseiny O.M., Goda A.M.A.S., Mabroke R.S., Soaudy M. (2018). Complexity of carbon sources and the impact on biofloc integrity and quality in tilapia (Oreochromis niloticus) tanks. AACL Bioflux, 11: 846–855. Search in Google Scholar

Emerenciano M.G.C., Martinez-Cordova L.R., Martinez-Porches M., Miranda-Baeza A. (2017). Biofloc techology (BFT): A tool for water quality management in aquaculture. In: Water quality, H. Tutu (ed.). https://doi.org/10.5772/66416. IntechOpen, pp. 91–109. Search in Google Scholar

Emparanza E.J. (2009). Problems affecting nitrification in commercial RAS with fixed-bed biofilters for salmonids in Chile. Aquac. Eng., 41: 91–96. Search in Google Scholar

FAO & Eurofish (2015). A Guide to recirculation aquaculture; an introduction to the new environmentally friendly and highly productive closed fish farming systems. Food and Agriculture Organization of the United Nations (FAO) and EUROFISH International Organisation, pp. 23–26. Search in Google Scholar

Ferreira G.S., Santos D., Schmachtl F., Machado C., Fernandes V., Bögner M., Schleder D.D., Seiffert W.Q., Vieira F.N. (2021). Heterotrophic, chemoautotrophic and mature approaches in biofloc system for Pacific white shrimp. Aquaculture, 533: 736099. Search in Google Scholar

Ferreira G.S., Silva V.F., Martins M.A., Chede Pereira da Silva A.C., Machado C., Seiffert W.Q., Vieira F.d.N. (2020). Strategies for ammonium and nitrite control in Litopenaeusvannamei nursery systems with bioflocs. Aquac. Eng., 88: 102040. Search in Google Scholar

Fiencke C., Spieck E., Bock E. (2005). Nitrogen fixation in agriculture, forestry, ecology, and the environment, 1st ed. Springer, Dordrecht, The Netherlands, p. 255. Search in Google Scholar

Gao L., Shan H.W., Zhang T.W., Bao W.Z., Ma S.J. (2012). Effects of carbohydrate addition on Litopenaeusvannamei intensive culture in a zero-water exchange system. Aquaculture, 342: 89–96. Search in Google Scholar

Garcés S., Lara G. (2023). Applying biofloc technology in the culture of mugil cephalus in subtropical conditions: effects on water quality and growth parameters. Fishes, 8: 420. Search in Google Scholar

Ge S., Wang S., Yang X., Qiu S., Li B., Peng Y. (2015). Detection of nitrifiers and evaluation of partial nitrification for wastewater treatment: A review. Chemosphere, 140: 85–98. Search in Google Scholar

Ghaleshiri M.B., Jafaryan H., Kordjazi Z., Adineh H., Farhangi M. (2022). Effects of different carbon sources on water quality, growth parameters and excretion of metabolic nitrogen in a biofloc -common carp (Cyprinus carpio) culture system. J. Fish., 75: 567–582. Search in Google Scholar

Goldman J.C., Caron D.A., Dennett M.R. (1987). Regulation of gross growth efficiency and ammonium regeneration in bacteria by substrate C:N ratio. Limnolo. Oceangra., 32: 1239–1252. Search in Google Scholar

Gomes Vilani F., Schveitzer R., da Fonseca Arantes R., do Nascimento Vieira F., Manoel do Espírito Santo C., Quadros Seiffert W. (2016). Strategies for water preparation in a biofloc system: effects of carbon source and fertilization dose on water quality and shrimp performance. Aquac. Eng., 74: 70–75. Search in Google Scholar

Gonçalves A.L., Pires J.C.M., Simões M. (2017). A review on the use of microalgal consortia for wastewater treatment. Algal Res., 24: 403–415. Search in Google Scholar

Guo H., Huang L., Hu S., Chen C., Huang X., Liu W., Wang S., Zhu Y., Zhao Y., Zhang D. (2020). Effects of carbon/nitrogen ratio on growth, intestinal microbiota and metabolome of shrimp (Litopenaeus vannamei). Front. Microbiol., 11: 652. Search in Google Scholar

Gutierrez-Wing M.T., Malone R.F. (2006). Biological filters in aquaculture: trends and research directions for freshwater and marine applications. Aquac. Eng., 34: 163–171. Search in Google Scholar

Haghparast M.M., Alishahi M., Ghorbanpour M., Shahriari A. (2020). Evaluation of hematoimmunological parameters and stress indicators of common carp (Cyprinus carpio) in different C/N ratio of biofloc system Aquac. Int., 28: 2191–2206. Search in Google Scholar

Hargreaves J.A. (2006). Photosynthetic suspended-growth systems in aquaculture. Aquac. Eng., 34: 344–363. Search in Google Scholar

Hargreaves J.A. (2013). Biofloc production systems for aquaculture. Southern Regional Aquaculture Center SRAC Publication No. 4503, 12 pp. Search in Google Scholar

Hari B., Madhusoodana Kurup B., Varghese J.T., Schrama J.W., Verdegem M.C.J. (2006). The effect of carbohydrate addition on water quality and the nitrogen budget in extensive shrimp culture systems. Aquaculture, 252: 248–263. Search in Google Scholar

Harini C., Rajagopalasamy C.B.T., Sampath-Kumar J.S., Santhakumar R. (2016). Role of biofloc in the growth and survival of blue morph, Pseudotropheus saulosi. Ind. J. Sci. Technol., 9: 1–7. Search in Google Scholar

Hepher B. (1985). Aquaculture intensification under land and water limitations. Geo J., 10: 253–259. Search in Google Scholar

Holl C.M., Tallamy C.J., Moss S.M. (2006). Varied microbes important to recirculating aquaculture systems. Global Aquaculture Advocate, 9: 3. Search in Google Scholar

Hu Z., Lee J.W., Chandran K., Kim S., Khanal S.K. (2012). Nitrous Oxide (N2O) Emission from Aquaculture: A Review. Environ. Sci. Technol., 46: 6470−6480. Search in Google Scholar

Huag R.T., McCarty P.L. (1971). Nitrification with submerged filters. J. Water Pollution Cont. Fed., 44: 2086–2102. Search in Google Scholar

Huang H.H. (2019). Novel Biofloc Technology (BFT) for ammonia assimilation and reuse in aquaculture in situ, IntechOpen, DOI: 10.5772/intechopen.88993. Search in Google Scholar

Huang H.H., Li C.Y., Liang T., Lei Y.J., Yang P.H., Wu M.X. (2022). Effects of carbon-to-nitrogen ratio (C:N) on water quality and growth performance of Litopenaeus vannamei (Boone, 1931) in the biofloc system with a salinity of 5‰. Aquac. Res., 53: 5287–5299. Search in Google Scholar

Jensen F.B. (2003). Nitrite disrupts multiple physiological functions in aquatic animals. Com. Biochem. Physiol., 135: 9–24. Search in Google Scholar

Jimenez-Ojeda Y.K., Luis F., Collazos-Lasso L.F., Arias-Castellanos J.A. (2018). Dynamics and use of nitrogen in biofloc technology – BFT. AACL Bioflux, 11: 1107–1129. Search in Google Scholar

Junier P., Molina V., Dorador C., Hadas O., Kim O.S., Junier T., Witzel K.P., Imhoff J.F. (2010). Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment. Appl. Microbiol. Biotechnol., 85: 425–440. Search in Google Scholar

Khanjani M.H., Alizadeh M. (2024). Effects of different salinity levels on performance of Nile tilapia fingerlings in a biofloc culture system. Ann. Anim. Sci., 23: 971–977. Search in Google Scholar

Khanjani M.H., Sharifinia M. (2021). Production of Nile tilapia Oreochromis niloticus reared in a limited water exchange system: The effect of different light levels. Aquaculture, 542: 736912. Search in Google Scholar

Khanjani M.H., Sharifinia M. (2022 a). Biofloc technology with addition molasses as carbon sources applied to Litopenaeus vannamei juvenile production under the effects of different C/N ratios. Aquac. Int., 30: 383–397. Search in Google Scholar

Khanjani M.H., Sharifinia M. (2022 b). Biofloc as a food source for Banana shrimp (Fenneropenaeus merguiensis) postlarvae. N. Am. J. Aquac., 84: 469–479. Search in Google Scholar

Khanjani M.H., Sajjadi M., Alizadeh M., Sourinejad I. (2016). Study on nursery growth performance of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) under different feeding levels in zero water exchange system. Iran. J. Fish. Sci., 15: 1465–1484. Search in Google Scholar

Khanjani M.H., Sharifinia M., Hajirezaee S. (2020 a). Effects of different salinity levels on water quality, growth performance and body composition of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) cultured in a zero water exchange heterotrophic system. Ann. Anim. Sci., 20: 1471–1486. Search in Google Scholar

Khanjani M.H., Alizadeh M., Sharifinia M. (2020 b). Rearing of the Pacific white shrimp, Litopenaeus vannamei in a biofloc system: The effects of different food sources and salinity levels. Aquac. Nut., 26: 328–337. Search in Google Scholar

Khanjani M.H., Alizadeh M., Sharifinia M. (2021 a). Effects of different carbon sources on water quality, biofloc quality, and growth performance of Nile tilapia (Oreochromis niloticus) fingerlings in a heterotrophic culture system. Aquac. Int., 29: 307–321. Search in Google Scholar

Khanjani M.H., Alizadeh M., Mohammadi M., Sarsangi Aliabad H. (2021 b). Biofloc system applied to Nile tilapia (Oreochromis niloticus) farming using different carbon sources: growth performance, carcass analysis, digestive and hepatic enzyme activity. Iran. J. Fish. Sci., 20: 490–513. Search in Google Scholar

Khanjani M.H., Alizadeh M., Mohammadi M., Sarsangi Aliabad H. (2021 c). The effect of adding molasses in different times on performance of Nile tilapia (Oreochromis niloticus) raised in a low-salinity biofloc system. Ann. Anim. Sci., 21: 1435–1454. Search in Google Scholar

Khanjani M.H., Mohammadi A., Emerenciano M.G.C. (2022 a). Microorganisms in biofloc aquaculture system. Aquac. Rep., 26: 101300. Search in Google Scholar

Khanjani M.H., Eslami J., Ghaedi G., Sourinejad I. (2022 b). The effects of different stocking densities on nursery performance of Banana shrimp (Fenneropenaeus merguiensis) reared under biofloc condition. Ann. Anim. Sci., 22: 1291–1299. Search in Google Scholar

Khanjani M.H., Torfi Mozanzade M., Fóes G.K. (2022 c). Aquamimicry system: a sutiable strategy for shrimp aquaculture. Ann. Anim. Sci., 22: 1201–1210. Search in Google Scholar

Khanjani M.H., Zahedi S., Mohammadi A. (2022 d). Integrated multitrophic aquaculture (IMTA) as an environmentally friendly system for sustainable aquaculture: functionality, species, and application of biofloc technology (BFT). Environ. Sci. Pollut. Res. Int., 29: 67513–67531. Search in Google Scholar

Khanjani M.H., da Silva L.O.B., Foes G.K., Vieira F.D., Poli M., Santos M., Emerenciano M.G.C. (2023 a). Synbiotics and aquamimicry as alternative microbial-based approaches in intensive shrimp farming and biofloc: Novel disruptive techniques or complementary management tools? A scientific-based overview. Aquaculture, 567: 739273. Search in Google Scholar

Khanjani M.H., Sharifinia M., Emerenciano M.G.C. (2023 b). A detailed look at the impacts of biofloc on immunological and hematological parameters and improving resistance to diseases. Fish Shellfish Immunol., 137: 108796. Search in Google Scholar

Khanjani M.H., Sharifinia M., Hajirezaee S. (2023 c). Biofloc: A sustainable alternative for improving the production of farmed cyprinid species. Aquac. Rep., 33: 101748. Search in Google Scholar

Khanjani M.H., Sharifinia M., Hajirezaee S. (2023 d). Strategies for promoting sustainable aquaculture in arid and semi-arid areas. Ann. Anim. Sci., 24: 293–305. Search in Google Scholar

Khanjani M.H., Torfi Mozanzade M., Sharifinia M., Emerenciano M.G.C. (2024 a). Broodstock and seed production in biofloc technology (BFT): An updated review focused on fish and penaeid shrimp. Aquaculture, 579: 740278. Search in Google Scholar

Khanjani M.H., Sharifinia M., Emerenciano M.G.C. (2024 b). Biofloc technology (BFT) in aquaculture: what goes right, what goes wrong? a scientific-based snapshot. Aquac. Nut., 7496572, 24 pp. Search in Google Scholar

Koops H.P., Pommerening-Röser A. (2001). Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species. FEMS Microbiol. Ecol., 37: 1–9. Search in Google Scholar

Krummenauer D., Samocha T., Poersch L., Lara G., Wasielesky W. Jr. (2014). The reuse of water on the culture of pacific white shrimp, Litopenaeus vannamei, in BFT system. J. World Aquac. Soc., 45: 3–14. Search in Google Scholar

Kumar S., Anand P.S., De D., Deo A.D., Ghoshal T.K., Sundaray J.K., Ponniah A.D., Jithendran K.P., Raja R.A., Biswas G., Lalitha N. (2017). Effects of biofloc under different carbon sources and protein levels on water quality, growth performance and immune responses in black tiger shrimp Penaeus monodon (Fabricius, 1978). Aquac. Res., 48: 1168–1182. Search in Google Scholar

Lekang O. (2007). Aquaculture engineering. Blackwell Publishing, pp. 121–130. Search in Google Scholar

Li C., Zhang X., Chen Y., Zhang S., Dai L., Zhu W., Chen Y. (2023). Optimized utilization of organic carbon in aquaculture biofloc systems: A Review. Fishes, 8: 465. Search in Google Scholar

Liu L., Hu Z., Dai X., Avnimelech Y. (2014). Effects of addition of maize starch on the yield, water quality and formation of bioflocs in an integrated shrimp culture system. Aquaculture, 418–419: 79–86. Search in Google Scholar

Liu W.C., Du X.Z., Tan H.X., Xie J., Luo G.Z., Sun D.C. (2021). Performance of a recirculating aquaculture system using biofloc biofilters with convertible water-treatment efficiencies. Sci. Total Environ., 754: 141918. Search in Google Scholar

Lücker S., Wagner M., Maixner F., Pelletier E., Koch H., Vacherie B., Rattei T., Damsté J.S.S., Spieck E., Le Paslier D., Daims H. (2010). A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria. Proc. Nati. Acad. Sci., 107: 13479–13484. Search in Google Scholar

Luo G., Gao Q., Wang C., Liu W., Sun D., Li L., Tan H. (2014). Growth, digestive activity, welfare, and partial cost-effectiveness of genetically improved farmed tilapia (Oreochromis niloticus) cultured in a recirculating aquaculture system and an indoor biofloc system. Aquaculture, 422–423: 1–7. Search in Google Scholar

Luo G., Zhang N., Cai S., Tan H., Liu Z. (2017). Nitrogen dynamics, bacterial community composition and biofloc quality in biofloc-based systems cultured Oreochromis niloticus with poly-β-hydroxybutyric and polycaprolactone as external carbohydrates. Aquaculture, 479: 732–741. Search in Google Scholar

Luo G., Jiayang L., Jinxiang X., Liu W., Tan H. (2023). Effects of dissolved organic carbon and total ammonia nitrogen concentrations with the same DOC/TAN on biofloc performance. Aquaculture, 574: 739713. Search in Google Scholar

Mallasen M., Valenti W.C. (2006). Effect of nitrite on larval development of the giant river prawn, Macrobrachium rosenbergii. Aquaculture, 261: 1292–1298. Search in Google Scholar

Malone R.F., Pfeiffer T.J. (2006). Rating fixed film nitrifying biofilters used in recirculating aquaculture systems. Aquac. Eng., 34: 389–402. Search in Google Scholar

Mansour A.T., Esteban M.A. (2017). Effects of carbon sources and plant protein levels in a biofloc system on growth performance, and the immune and antioxidant status of Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol., 64: 202–209. Search in Google Scholar

Mansour A.T., Ashry O.A., El-Neweshy M.S., Alsaqufi A.S., Dighiesh H.S., Ashour M., Kelany M.S., El-Sawy M.A., Mabrouk M.M., Abbas E.M., Sharawy Z.Z. (2022). Effect of agricultural by-products as a carbon source in a biofloc-based system on growth performance, digestive enzyme activities, hepatopancreas histology, and gut bacterial load of Litopenaeus vannamei post larvae. J. Mar. Sci. Eng., 10: 1333. Search in Google Scholar

Martınez-Cordova L.R., Martınez-Porchas M., Cortes-Jacinto E. (2009). Camaronicultura mexicana y mundial: ? actividad sustentable o industria contaminante? Rev. Int. Contam. Ambient., 25: 181–196. Search in Google Scholar

Martınez-Cordova L.R., Martınez-Porchas M., Emerenciano M.G.C., Miranda-Baeza A., Gollas-Galvan T. (2017). From microbes to fish the next revolution in food production. Crit. Rev. Biotechnol., 37: 287–295. Search in Google Scholar

Miao L., Liu Z. (2018). Microbiome analysis and -omics studies of microbial denitrification processes in wastewater treatment: Recent advances. Sci. China Life Sci., 61: 753–761. Search in Google Scholar

Mobarry B.K., Wagner M., Urbain V., Rittmann B.E., Stahl D.A. (1996). Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Appl. Environ. Microbiol., 62: 2156–2162. Search in Google Scholar

Mook W., Chakrabarti M., Aroua M., Khan G., Ali B., Islam M., Hassan M.A. (2012). Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: A review. Desalination, 285: 1–13. Search in Google Scholar

Nazarpour S., Mohammadiazarm H. (2023). Optimizing stocking density in biofloc culture of juvenile common carp (Cyprinus carpio) using growth and immune-biochemical indices as indicators. Aquac. Stu., 23: 1223. Search in Google Scholar

Neori A., Chopin T., Troell M., Buschmann A.H., Kraemer G.P., Halling C., Yarish C. (2004). Integrated aquaculture: Rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture, 231: 361–391. Search in Google Scholar

Nootong K., Pavasant P., Powtongsook S. (2011). Effects of organic carbon addition in controlling inorganic nitrogen concentrations in a biofloc system. J. World Aquacult. Soc., 42: 339–346. Search in Google Scholar

Odegaard H. (1992). Norwegian experiences with chemical treatment of raw wastewater. Water Sci. Technol., 25: 255–264. Search in Google Scholar

Padeniya U., Davis D.A., Wells D.E., Bruce T.J. (2022). Microbial interactions, growth, and health of aquatic species in biofloc systems. Water, 14: 4019. Search in Google Scholar

Paniagua-Michel J., Garcia O. (2003). Ex-situ bioremediation of shrimp culture effluent using constructed microbial mats. Aquac. Eng., 28: 131–139. Search in Google Scholar

Panigrahi A., Saranya C., Sundaram M., Vinoth Kannan S.R., Das R.R., Satish Kumar R., Rajesh P., Otta S.K. (2018). Carbon: Nitrogen (C:N) ratio level variation influences microbial community of the system and growth as well as immunity of shrimp (Litopenaeus vannamei) in biofloc based culture system. Fish Shellfish Immunol., 81: 329–327. Search in Google Scholar

Panigrahi A., Sundaram M., Saranya C., Swain S., Dash R., Dayal J.S. (2019 a). Carbohydrate sources deferentially influence growth performances, microbial dynamics and immunomodulation in Pacific white shrimp (Litopenaeus vannamei) under biofloc system. Fish Shellfish Immunol., 86: 1207–1216. Search in Google Scholar

Panigrahi A., Sundaram M., Chakrapani S., Rajasekar S., Syama Dayal J., Chavali G. (2019 b). Effect of carbon and nitrogen ratio (C:N) manipulation on the production performance and immunity of Pacific white shrimp Litopenaeus vannamei (Boone, 1931) in a biofloc‐based rearing system. Aquac. Res., 50: 29–41. Search in Google Scholar

Paul D., Hall S.G. (2021). Biochar and zeolite as alternative biofilter media for denitrification of aquaculture effluents. Water, 13: 2703. Search in Google Scholar

Paul D., Banerjee A. (2022). Technologies for Biological and Bioelectrochemical Removal of Inorganic Nitrogen from Wastewater: A Review. Nitrogen, 3: 298–313. Search in Google Scholar

Perez-Fuentes J.A., Hernandez-Vergara M.P., Perez-Rostro C.I., Fogel I. (2016). C:N ratios affect nitrogen removal and production of Nile tilapia Oreochromis niloticus raised in a biofloc system under high density cultivation. Aquaculture, 452: 247–251. Search in Google Scholar

Philips S., Laanbroek H.J., Verstraete W. (2002). Origin, causes and effects of increased nitrite concentrations in aquatic environments. Rev. Environ. Sci. Biotechnol., 1: 115–141. Search in Google Scholar

Piedrahita R.H. (2003). Reducing the potential environmental impact of tank aquaculture effluents through intensification and recirculation. Aquaculture, 226: 35–44. Search in Google Scholar

Pimentel O.A.L.F., Amado A.M., They N.H. (2023). Biofloc colors as an assessment tool for water quality in shrimp farming with BFT systems. Aquacult. Eng., 101: 102321. Search in Google Scholar

Popoola O.M., Oguntade S.T., Adebayo O.T. (2021). Growth performance and immunological response of African Catfish (Clarias gariepinus) juveniles reared in biofloc system. J. Agr. Rural Dev. Trop. Subtrop., 122: 137–145. Search in Google Scholar

Purkhold U., Pommerening-Röser A., Juretschko S., Schmid M.C., Koops H.P., Wagner M. (2000). Phylogeny of all recognized species of ammonia oxidizers based on comparative 16s rrna and amoa sequence analysis: implications for molecular diversity surveys. Appl. Environ. Microbiol., 66: 5368–5382. Search in Google Scholar

Qoljaei B., Adineh H., Hersij M., Shirangi S.A. (2023). Effect of carbon and nitrogen ratio (C:N) manipulation on growth performance, immune response and stress index of common carp (Cyprinus carpio) acute exposure to ammonia stress in biofloc system. J. Fish., 76: 265–278. Search in Google Scholar

Rahimi S., Modin O., Mijakovic I. (2020). Technologies for biological removal and recovery of nitrogen from wastewater. Biotechnol. Adv., 43: 107570. Search in Google Scholar

Ray A.J., Lotz J.M. (2014). Comparing a chemoautotrophic-based biofloc system and three heterotrophic-based systems receiving different carbohydrate sources. Aquac. Eng., 63: 54–61. Search in Google Scholar

Razak M.N.A., Ibrahim M.F., Yee P.L., Hassan M.A., Abd-Aziz S. (2012). Utilization of oil palm decanter cake for cellulase and polyoses production. Biotechnol. Bioprocess Eng., 17: 547–555. Search in Google Scholar

Rhode R. (2014). Marine shrimp biofloc systems: Basic management practices. FNR495-W: Purdue University, p. 5. Search in Google Scholar

Saha J., Hossain M.A., Mamun M.Al., Islam M.R., Alam M.S. (2022). Effects of carbon-nitrogen ratio manipulation on the growth performance, body composition and immunity of stinging catfish Heteropneustes fossilis in a biofloc-based culture system. Aquac. Rep., 25: 101274. Search in Google Scholar

Schveitzer R., Arantes R., Costódio P.F.S., do Espírito Santo C.M., Arana L.V., Seiffert W.Q., Andreatta E.R. (2013). Effect of different biofloc levels on microbial activity, wáter quality and performance of Litopenaeus vannamei in a tank system operated with no water exchange. Aquac. Eng., 56: 59–70. Search in Google Scholar

Sedlacek C.J., Nielsen S., Greis K.D., Haffey W.D., Revsbech N.P., Ticak T., Laanbroek H.J., Bollmann A. (2016). Effects of bacterial community members on the proteome of the ammonia-oxidizing bacterium Nitrosomonas sp. Strain Is79. Appl. Environ. Microbiol., 82: 4776–4788. Search in Google Scholar

Sena Fugimura M.M., Reis Flor H., de Melo E.P., da Costa T.V., Wasielesky W., Oshiro, L.M.Y. (2015). Brewery residues as a source of organic carbon in Litopenaeus schmitti white shrimp farms with BFT systems. Aquacult. Int., 23: 509–522. Search in Google Scholar

Serfling S.A. (2006). Microbial flocs. Natural treatment method supports freshwater, marine species in recirculating systems. Global Aquacult. Advoc., 9: 34–36. Search in Google Scholar

Serra F.P., Gaona C.A., Furtado P.S., Poersch L.H., Wasielesky W. (2015). Use of different carbon sources for the biofloc system adopted during the nursery and grow-out culture of Litopenaeus vannamei. Aquac. Int., 23: 1325–1339. Search in Google Scholar

Sigee D.C. (2005). Freshwater microbiology: Biodiversity and dynamic interactions of microorganisms in the aquatic environment. John Wiley & Sons Ltd., p. 544. Search in Google Scholar

Silva K.R., Wasielesky W. Jr., Abreu P.C. (2013). Nitrogen and Phosphorus Dynamics in the biofloc production of the pacific white shrimp, Litopenaus vannamei. J. World Aquac. Soc., 44: 30–41. Search in Google Scholar

Silva U.L., Falcon D.R., Pessôa M.N., Correia E. (2017). Carbon sources and C:N ratios on water quality for nile tilapia farming in biofloc system. Rev. Caatinga, 30: 1017–1027. Search in Google Scholar

Solanki S., Meshram S.J., Dhamagaye H.B., Naik S.D., Shingare P.E., Yadav B.M. (2023). Effect of c/n ratio levels and stocking density of catla spawn (Gibelion Catla) on water quality, growth performance, and biofloc nutritional composition in an indoor biofloc system. Aquac. Res., 2501653, 11 pp. Search in Google Scholar

Sood A., Renuka N., Prasanna R., Ahluwalia A.S. (2015). Cyanobacteria as potential options for wastewater treatment. In: Phytoremediation, Springer, Cham, Switzerland, pp. 83–93. Search in Google Scholar

Souza J., Cardozo A., Wasielesky W. Jr., Abreu P.C. (2019). Does the biofloc size matter to the nitrification process in Biofloc Technology (BFT) Systems? Aquaculture, 500: 443–450. Search in Google Scholar

Stein L.Y., Arp D.J. (1998). Loss of Ammonia monooxygenase activity in Nitrosomonas europaea upon exposure to nitrite. Appl. Environ. Microbiol., 64: 4098–4102. Search in Google Scholar

Stopforth J.D., O’Connor R., Lopes M., Kottapalli B., Hill W.E., Samadpour M. (2007). Validation of individual and multiple-sequential interventions for reduction of microbial populations during processing of poultry carcasses and parts. J. Food Prot., 70: 1393–1401. Search in Google Scholar

Suita S.M., Ballester E.L.C., Abreu P.C.O.V., Wasielesky W. (2015). Dextrose as carbon source in the culture of Litopenaeus vannamei (Boone, 1931) in a zero exchange system. Lat. Am. J. Aquat. Res., 45: 526–533. Search in Google Scholar

Svobodova Z., Machova J., Poleszczuk G., Huda J., Hamackova J., Kroupova H. (2005). Nitrite poisoning of fish in aquaculture facilities with water-recirculating systems: three case studies. Acta Vet. Brno, 74: 129–13. Search in Google Scholar

Tayyab K., Aslam S., Ghauri M.A., Abbas A.S., Hussain A. (2023). Consequential study on different levels of C/N ratios used in biofloc-based aquaculture system. Braz. J. Biol., 83: e248878. Search in Google Scholar

Taziki M., Ahmadzadeh H., Murry M.A., Lyon S.R. (2016). Nitrate and nitrite removal from wastewater using algae. Curr. Biotechnol., 4: 426–440. Search in Google Scholar

Thompson F.L., Abreu P.C., Wasielesky W. (2002). Importance of biofilm for water quality and nourishment in intensive shrimp culture. Aquaculture, 203: 263–278. Search in Google Scholar

Tierney T.W., Ray AJ. (2018). Comparing biofloc, clear-water, and hybrid nursery systems (Part I): Shrimp (Litopenaeus vannamei) production, water quality, and stable isotope dynamics. Aquac. Eng., 82: 73–79. Search in Google Scholar

Timmons M.B., Ebeling J.M., Wheaton F.W., Summerfelt S.T., Vinci B.J. (2002). Recirculating aquaculture systems, 2nd ed. New York, Cayuga Aqua Ventures, p. 769. Search in Google Scholar

Tinh T.H., Kokou F., Hai T.N., Verreth J.A.J., Verdegem M.C.J. (2023). Effects of feed, carbohydrate addition and stocking density on Pacific white shrimp (Litopenaeus vannamei) production. Aquac. Eng., 101: 102325. Search in Google Scholar

Tinh T.H., Hai T.N., Verreth J.A.J., Verdegem M.C.J. (2021b). Effects of carbohydrate addition frequencies on biofloc culture of Pacific white shrimp (Litopenaeus vannamei). Aquaculture, 534: 736271. Search in Google Scholar

Tinh T.H., Koppenol T., Ngoc H.T., Verreth J.A.J., Verdegem M.C.J. (2021a). Effects of carbohydrate sources on a biofloc nursery system for whiteleg shrimp (Litopenaeus vannamei). Aquaculture, 531: 735795. Search in Google Scholar

Valenti W.C., Daniels W.H. (2000). Recirculation hatchery systems and management. In: Freshwater Prawn Culture, New M.B., Valenti W.C. (eds). Blackwell, Oxford, pp. 69–90. Search in Google Scholar

Valenzuela-Jiménez M., Durruty-Lagunes C., Cuzon G., Pacheco E., Arévalo M., Aguilera-Rivera D., Wasielesky W., Rodríguez-Fuentes G., Barreto A., Gaxiola G. (2022). Effect of water salinity on the oxidative system of juveniles of the North Atlantic white shrimp Litopenaeus setiferus reared in biofloc technology. J. World Aquacult. Soc., 53: 258–270. Search in Google Scholar

Van Wyk P., Davis-Hodgkins M., Laramore R., Main K.L., Scarpa J. (1999). Farming marine shrimp in recirculating freshwater systems. Florida Department of Agriculture and Consumer Services: Tallahassee. Search in Google Scholar

Vázquez-Euán R., Garibay-Valdez E., Martínez-Porchas M., Martínez-Córdova L.R., Enriquez-Ocaña L.F., Vílchez-Vargas R., Calderón K. (2022). Effect of different probiotic diets on microbial gut characterization and gene expression of Litopenaeus vannamei cultivated in BFT system. Turk. J. Fish. Aquat. Sci., 22: 21358. Search in Google Scholar

Vymazal J. (1988). The use of periphyton communities for nutrient removal from polluted streams. Hydrobiologia, 166: 225–237. Search in Google Scholar

Wagner M., Loy A. (2002). Bacterial community composition and function in sewage treatment systems. Curr. Opin. Biotechnol., 13: 218–227. Search in Google Scholar

Wang C., Pan L., Zhang K., Xu W., Zhao D., Mei L. (2016). Effects of different carbon sources addition on nutrition composition and extracellular enzymes activity of bioflocs, and digestive enzymes activity and growth performance of Litopenaeus vannamei in zero-exchange culture tanks. Aquacult. Res., 47: 3307–3318. Search in Google Scholar

Wang M., Wu Y., Zhu J., Wang C., Zhu Y., Tian Q. (2018). The New developments made in the autotrophic and heterotrophic ammonia oxidation. IOP Conference Series: Earth and Environmental Science, 178: 012016. Search in Google Scholar

Wei Y.F., Liao S.A., Wang A.L. (2016). The effect of different carbon sources on the nutritional composition, microbial community and structure of bioflocs. Aquaculture, 465: 88–93. Search in Google Scholar

Wood P.M. (1986). Nitrification as a bacterial energy source. Spec. Publ. Soc. Gen. Microbiol., 20: 39–67. Search in Google Scholar

Wu X., Wu C., Wang G., Luo G., Tan H. (2021). The effect of different addition amounts of poly-beta-hydroxybutyrate acid(PHB) as a slow-release carbon source in biological flocculation. Fish. Moderniz., 48: 19–27. Search in Google Scholar

Xin L., Hong-Ying H., Yu-Ping Z. (2011). Growth and lipid accumulation properties of a freshwater microalga Scenedesmus sp. under different cultivation temperature. Bioresour. Technol., 102: 3098–3102. Search in Google Scholar

Xu W., Wen G., Su H., Xu Y., Hu X., Cao Y. (2022). Effect of input C/N ratio on bacterial community of water biofloc and shrimp gut in a commercial zero‐exchange system with intensive production of Penaeus vannamei. Microorganisms, 10: 1060. Search in Google Scholar

Xu W.J., Morris T.C., Samocha T.M. (2016). Effects of C/N ratio on biofloc development, water quality, and performance of Litopenaeus vannamei juveniles in a biofloc-based, high-density, zero-exchange, outdoor tank system. Aquaculture, 453: 169–175. Search in Google Scholar

Yeganeh V., Sharifinia M., Mobaraki S., Dashtiannasab A., Aeinjamshid K., Borazjani J.M., Maghsoudloo T. (2020). Survey of survival rate and histological alterations of gills and hepatopancreas of the Litopenaeus vannamei juveniles caused by exposure of Margalefidinium / Cochlodiniumpolykrikoides isolated from the Persian Gulf. Harmful Algae, 97: 101856. Search in Google Scholar

Yu Y.B., Lee K.M., Kim J.H., Kang J.C., Kim J.H. (2023). Comparative analysis of morphological characteristics, hematological parameters, body composition and sensory evaluation in olive flounder, Paralichthys olivaceus raised in biofloc and seawater to evaluate marketability. Aquac. Rep., 30: 101616. Search in Google Scholar

Yusoff F.Md., Banerjee S., Khatoon H., Shariff M. (2011). Biological approaches in management of nitrogenous compounds in aquaculture systems. Dyn. Biochem. Pro.Biotechnol. Mol. Biol., 5: 21–31. Search in Google Scholar

Zakhama-Sraieb R., Sghaier Y.R., Ben Hmida A., Cappai G., Carucci A., Charfi-Cheikhrouha F. (2016). Variation along the year of trace metal levels in the compartments of the seagrass Posidonia oceanica in Port El Kantaoui, Tunisia. Environ. Sci. Pollut. Res., 23: 1681–1690. Search in Google Scholar

Zhang N., Luo G., Tan H., Liu W., Hou Z. (2016). Growth, digestive enzyme activity and welfare of tilapia (Oreochromis niloticus) reared in a biofloc-based system with poly-β-hydroxybutyric as a carbon source. Aquaculture, 464: 710–717. Search in Google Scholar

Zhao D., Pan L., Huang F., Wang C., Xu W. (2016). Effects of different carbon sources on bioactive compound production of biofloc, immune response, antioxidant level, and growth performance of Litopenaeus vannamei in zero-water exchange culture tanks. J. World Aquac. Soc., 47: 566–576. Search in Google Scholar

eISSN:
2300-8733
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine