Accesso libero

Deciphering the transcriptional activities of genes coding for adipokines and their receptors in porcine ex situ-protected mesenchymal stem cells undergoing adipogenic differentiation

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Adamzyk C., Emonds T., Falkenstein J., Tolba R., Jahnen-Dechent W., Lethaus B., Neuss S. (2013). Different culture media affect proliferation, surface epitope expression, and differentiation of ovine MSC. Stem Cells Int., 2013: 387324. Search in Google Scholar

Angela P.H., Burgess A.P.H., Vanella L., Bellner L., Gotlinger K., Falck J.R., Abraham N.G., Schwartzman M.L., Kappas A. (2012). Heme Oxygenase (HO-1) Rescue of Adipocyte Dysfunction in HO-2 Deficient Mice via Recruitment of Epoxyeicosatrienoic Acids (EETs) and Adiponectin. Cell Physiol. Biochem., 29: 99–110. Search in Google Scholar

Bauer S., Weigert J., Neumeier M., Wanninger J., Schaffler A., Luchner A., Schnitzbauer A.A., Aslanidis C., Buechlera C. (2010). Low-abundant adiponectin receptors in visceral adipose tissue of humans and rats are further reduced in diabetic animals. Arch. Med. Res., 41: 75–82. Search in Google Scholar

Branly T., Bertoni L., Contentin R., Rakic R., Gomez-Leduc T., Desancé M., Hervieu M., Legendre F., Jacquet S., Audigié F., Denoix J.M., Demoor M., Galéra F. (2017). Characterization and use of equine bone marrow mesenchymal stem cells in equine cartilage engineering. Study of their hyaline cartilage forming potential when cultured under hypoxia within a biomaterial in the presence of BMP-2 and TGF-β1. Stem Cell Rev. Rep., 13: 611–630. Search in Google Scholar

Brozovich A., Brent J.S., Bauza G., Banche Niclot F., Lintner D., Taraballi F., McCulloch P.C. (2021). High variability of mesenchymal stem cells obtained via bone marrow aspirate concentrate compared with traditional bone marrow aspiration technique. Orthop. J. Sports Med., 9: 23259671211058459. Search in Google Scholar

Bruno A., Di Sano C., Simon H.U., Chanez P., Patti A.M., Di Vincenzo S., Paola Dino P., D’Esposito V., Formisano P., Beguinot F., Pace E. (2021). Leptin and TGF-β1 downregulate PREP1 expression in human adipose-derived mesenchymal stem cells and mature adipocytes. Front. Cell Dev. Biol., 9: 700481. Search in Google Scholar

de Assis-Ferreira A., Saldanha-Gama R., Mesquita de Brito N., Renovato-Martins M., Loureiro Simões R., Barja-Fidalgo C., Vargas da Silva S. (2021). Obesity enhances the recruitment of mesenchymal stem cells to visceral adipose tissue. J. Mol. Endocrinol., 67: 15–26 Search in Google Scholar

Dicker A., Le Blancb K., Astrom G., van Harmelena V., Gotherstrom C., Blomqvista L., Arnera P., Ryden M. (2005). Functional studies of mesenchymal stem cells derived from adult human adipose tissue. Exp. Cell Res., 308: 283–290. Search in Google Scholar

Farkhondeh T., Llorens S., Pourbagher-Shahri A.M., Ashrafizadeh M., Talebi M., Shakibaei M., Samarghandian S. (2020). An overview of the role of adipokines in cardiometabolic disease. Molecules, 25: 5218. Search in Google Scholar

Fasshauer M., Kleinb J., Kralischa S., Kliera M., Lossner U., Bluher M., Ralf Paschkea R. (2004). Growth hormone is a positive regulator of adiponectin receptor 2 in 3T3-L1 adipocytes. FEBS Lett., 558: 27–32. Search in Google Scholar

Garcia G.A., Oliveira R.G., Dariolli R., Rudge M.V.C., Barbosa A.M.P., Floriano J.F., Ribeiro-Paes J.T. (2022). Isolation and characterization of farm pig adipose tissue-derived mesenchymal stromal/stem cells. Braz. J. Med. Biol. Res., 55: 12343. Search in Google Scholar

Gawrońska-Kozak B. (2014). Preparation and differentiation of mesenchymal stem cells from ears of adult mice. Methods Enzymol., 538: 1–13. Search in Google Scholar

Hegyi K., Fülöp K., Kovács K., Falus A., Tóth S. (2004). High leptin level is accompanied with decreased long leptin receptor transcript in histamine deficient transgenic mice. Immunol Lett., 92: 193–197. Search in Google Scholar

Hossain M.M., Murali M.R., Kamarul T. (2017). Genetically modified mesenchymal stem/stromal cells transfected with adiponectin gene can stably secrete adiponectin. Life Sci., 182: 50–56. Search in Google Scholar

Hur J.W., Cho T.H., Park D.H., Lee J.B., Park J.Y., Chung Y.G. (2016). Intrathecal transplantation of autologous adipose-derived mesenchymal stem cells for treating spinal cord injury: A human trial. J. Spinal Cord. Med., 39: 655–664. Search in Google Scholar

Ishikane S., Ikushima E., Igawa K., Tomooka K., Takahashi-Yanaga F. (2021). Differentiation-inducing factor-1 potentiates adipogenic differentiation and attenuates the osteogenic differentiation of bone marrow-derived mesenchymal stem cells. Biochim. Biophys. Acta Mol. Cell Res., 1868: 118909. Search in Google Scholar

Jéquier E. (2002). Leptin signaling, adiposity, and energy balance. Ann. N.Y. Acad. Sci., 967: 379–388. Search in Google Scholar

Kim G.S., Hong J.S., Kim S.W., Koh J.M., An C.S., Choi J.Y., Cheng S.L. (2003). Leptin induces apoptosis via ERK/cPLA2/cytochrome c pathway in human bone marrow stromal cells. J. Biol. Chem., 278: 21920–21929. Search in Google Scholar

Kouchakian M.R., Baghban N., Moniri S.F., Baghban M., Bakhshalizadeh S., Najafzadeh V., Safaei Z., Izanlou S., Khoradmehr A., Nabipour I., Shirazi R., Tamadon A. (2021). The clinical trials of mesenchymal stromal cells therapy. Stem Cells Int., 2021: 1634782. Search in Google Scholar

Kozlowska U., Krawczenko A., Futoma K., Jurek T., Rorat M., Patrzalek D., Klimczak A. (2019). Similarities and differences between mesenchymal stem/progenitor cells derived from various human tissues. World J. Stem Cells, 11: 347–374. Search in Google Scholar

Kurowska P., Mlyczyńska E., Dawid M., Dupont J., Rak A. (2020). Role of vaspin in porcine ovary: effect on signaling pathways and steroid synthesis via GRP78 receptor and protein kinase A†. Biol. Reprod., 102: 1290–1305. Search in Google Scholar

Kurowska P., Dawid M., Oprocha J., Respekta N., Serra L., Estienne A., Pawlicki P., Kotula-Balak M., Guérif F., Dupont J., Rak A. (2023). Spexin role in human granulosa cells physiology and PCOS: expression and negative impact on steroidogenesis and proliferation. Biol. Reprod., 109: 705–719. Search in Google Scholar

Laschober G.T., Brunauer R., Jamnig A., Fehrer C., Greiderer B., Lepperdinger G. (2009). Leptin receptor/CD295 is upregulated on primary human mesenchymal stem cells of advancing biological age and distinctly marks the subpopulation of dying cells. Exp. Gerontol., 44: 57–62. Search in Google Scholar

Li C.Y., Wu X.Y., Tong J.B., Yang X.X., Zhao J.L., Zheng Q.F., Zhao G.B., Ma Z.J. (2015). Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem Cell Res. Ther., 6: 55. Search in Google Scholar

Liau L.L., Looi Q.H., Chia W.C., Subramaniam T., Ng M.H., Law J.X. (2020). Treatment of spinal cord injury with mesenchymal stem cells. Cell Biosci., 10: 112. Search in Google Scholar

Livak K., Schmittgen T. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25: 402–408. Search in Google Scholar

Martella E., Bellotti C., Dozza B., Perrone S., Donati D., Lucarelli E. (2014). Secreted adiponectin as a marker to evaluate in vitro the adipogenic differentiation of human mesenchymal stromal cells. Cytotherapy, 16: 1476–1485. Search in Google Scholar

Martinez-Lorenzo M.J., Royo-Canas M., Alegre-Aguaron E., Desportes P., Castiella T., Garcia-Alvarez F., Larrad L. (2009). Phenotype and chondrogenic differentiation of mesenchymal cells from adipose tissue of different species. J. Orthop. Res., 27: 1499–1507. Search in Google Scholar

Matsuzaki Y., Mabuchi Y., Okano H. (2014). Leptin receptor makes its mark on MSCs. Cell Stem Cell., 15: 112–114. Search in Google Scholar

Meacham C.E., Jeffery E.C., Burgess R.J., Sivakumar C.D., Arora M.A., Stanley A.M., Hildinger E.M., Crane G.M., Zhao Z., Morrison S.J. (2022). Adiponectin receptors sustain hematopoietic stem cells throughout adulthood by protecting them from inflammation. Nat. Cell Biol., 24: 697–707. Search in Google Scholar

Meyer J., Salamon A., Herzmann N., Adam S., Kleine H.D., Matthiesen I., Ueberreiter K., Peters K. (2015). Isolation and differentiation potential of human mesenchymal stem cells from adipose tissue harvested by water jet-assisted liposuction. Aesthet. Surg. J., 35: 1030–1039. Search in Google Scholar

Molnar V., Pavelić E., Vrdoljak K., Ćemerin M., Klarić E., Matisić V., Bjelica R., Brlek P., Kovacić I., Tremolada C., Primorac D. (2022). Mesenchymal stem cell mechanisms of action and clinical effects in osteoarthritis: a narrative review. Genes, 13: 949. Search in Google Scholar

Monteiro L., Pereira J.A.D.S., Palhinha L., Moraes-Vieira P.M.M. (2019). Leptin in the regulation of the immunometabolism of adipose tissue-macrophages. J. Leukoc. Biol., 106: 703–716. Search in Google Scholar

Nakamura Y., Kita S., Tanaka Y., Fukuda S., Obata Y., Okita T., Nishida H., Takahashi Y., Kawachi Y., Tsugawa-Shimizu Y., Fujishima Y., Nishizawa H., Takakura Y., Miyagawa S., Sawa Y., Maeda N., Shimomura I. (2020). Adiponectin stimulates exosome release to enhance mesenchymal stem-cell-driven therapy of heart failure in mice. Mol. Ther., 28: 2203–2219. Search in Google Scholar

Niemeyer P., Fechner K., Milz S., Richter W., Suedkamp NP., Mehlhorn AT., Pearce S., Kasten P. (2010). Comparison of mesenchymal stem cells from bone marrow and adipose tissue for bone regeneration in a critical size defect of the sheep tibia and the influence of platelet-rich plasma. Biomaterials, 31: 3572–3579. Search in Google Scholar

Rak A., Drwal E., Rame C., Knapczyk-Stwora K., Słomczyńska M., Dupont J., Gregoraszczuk E. (2017). Expression of apelin and apelin receptor (APJ) in porcine ovarian follicles and in vitro effect of apelin on steroidogenesis and proliferation through APJ activation and different signaling pathways. Theriogenology, 96: 126–135. Search in Google Scholar

Opiela J., Bülbül B., Romanek J. (2020). Varied approach of using MSCs for bovine embryo in vitro culture. Anim. Biotechnol., 31: 1–8. Search in Google Scholar

Opiela J., Samiec M., Bochenek M., Lipiński D., Romanek J., Wilczek P. (2013). DNA aneuploidy in porcine bone marrow–derived mesenchymal stem cells undergoing osteogenic and adipogenic in vitro differentiation. Cell. Reprogram., 15: 425–434. Search in Google Scholar

Paebst F., Piehler D., Brehm W., Heller S., Schroeck C., Tárnok A., Burk J. (2014). Comparative immunophenotyping of equine multipotent mesenchymal stromal cells: an approach toward a standardized definition. Cytometry A, 85: 678–687. Search in Google Scholar

Pham D.V., Nguyen T.K., Park P.H. (2023). Adipokines at the crossroads of obesity and mesenchymal stem cell therapy. Exp. Mol. Med., 55: 313–324. Search in Google Scholar

Ranera B., Lyahyai J., Romero A., Vázquez F.J., Remacha A.R., Bernal M.L., Zaragoza P., Rodellar C., Martín-Burriel I. (2011). Immunophenotype and gene expression profiles of cell surface markers of mesenchymal stem cells derived from equine bone marrow and adipose tissue. Vet. Immunol. Immunopathol., 144: 147–154. Search in Google Scholar

Rasmussen M.S., Lihn A.S., Pedersen S.B., Bruun J.M., Rasmussen M., Richelsen B. (2006). Adiponectin receptors in human adipose tissue: effects of obesity, weight loss, and fat depots. Obesity, 14: 28–35. Search in Google Scholar

Rentsch C., Hess R., Rentsch B., Hofman A., Manthey S., Scharnweber D., Biewener A., Zwipp H. (2010). Ovine bone marrow mesenchymal stem cells: isolation and characterization of the cells and their osteogenic differentation potential on embroidered and surface-modified polycarpolactone-co-lactide scaffolds. In Vitro Cell. Dev. Biol. Anim., 46: 624–634. Search in Google Scholar

Sobhani A., Khanlarkhani N., Baazm M., Mohammadzadeh F., Najafi A., Mehdinejadiani S., Sargolzaei F. (2017). Multipotent stem cell and current application. Aval Acta Med. Iran, 55: 6–23. Search in Google Scholar

Sottile V., Halleux C., Bassilana F., Keller H., Seuwen K. (2002). Stem cell characteristics trabecular bone-derived cells. Bone Vol., 30: 699–704. Search in Google Scholar

Straub L.G., Scherer P.E. (2019). Metabolic messengers: adiponectin. Nat. Metab., 1: 334–339. Search in Google Scholar

Takahashi A., Nakajima H., Uchida K., Takeura N., Honjoh K., Watanabe S., Kitade M., Kokubo Y., Johnson W.E.B., Matsumine A. (2018). Comparison of mesenchymal stromal cells isolated from murine adipose tissue and bone marrow in the treatment of spinal cord injury. Cell Transplant., 27: 1126–1139. Search in Google Scholar

Uckan D., Kilic E., Sharafi P., Kazik M., Kaya F.A., Erdemli E., Can A., Tezcaner A., Kocaefe C. (2009). Adipocyte differentiation defect in mesenchymal stromal cells of patients with malignant infantile osteopetrosis. Cytotherapy, 11: 392–402. Search in Google Scholar

Yue R., Zhou B.O., Shimada I.S., Zhao Z., Morrison S.J. (2016). Leptin receptor promotes adipogenesis and reduces osteogenesis by regulating mesenchymal stromal cells in adult bone marrow. Cell Stem Cell, 18: 782–796. Search in Google Scholar

Zhang B., Yang L., Zeng Z., Feng Y., Wang X., Wu X., Luo H., Zhang J., Zhang M., Pakvasa M., Wagstaff W., He F., Mao Y., Qin K., Ding H., Zhang Y., Niu C., Wu M., Zhao X., Wang H., Huang L., Shi D., Liu Q., Ni N., Fu K., Athiviraham A., Moriatis Wolf J., Lee M.J., Hynes K., Strelzow J., El Dafrawy M., Xia Y., He T.C. (2020). Leptin potentiates BMP9-induced osteogenic differentiation of mesenchymal stem cells through the activation of JAK/STAT signaling. Stem Cells Dev., 29: 498–510. Search in Google Scholar

Zhou B.O, Yue R., Murphy M.M., Peyer J., Morrison S.J. (2014). Leptin receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell, 15: 154–168. Search in Google Scholar

eISSN:
2300-8733
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine