Accesso libero

Markers of bone turnover and biomechanical properties of the third metacarpal bone of growing pigs subjected to the different dietary phosphorus and calcium content

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Ahlstrøm Ø., Skrede A. (2020). Eggshell as a calcium source replacing limestone meal in mink. J. Anim. Feed Sci., 29: 338–344. Search in Google Scholar

AOAC (2011). Official Methods of Analysis, 18th ed. Association of Official Analytical Chemists, Gaithersburg, MD, USA. Search in Google Scholar

Berndt T., Kumar R. (2009). Novel mechanisms in the regulation of phosphorus homeostasis. Physiology, 24: 17–25. Search in Google Scholar

Beyer M., Chudy A., Hoffmann L., Jentsch W., Laube W., Nehring K., Schiemann R. (2003). Rostock feed evaluation system. Research Institute for the Biology of Farm Animals (FBN), Dummerstorf, Germany. Search in Google Scholar

Canalis E., McCarthy T.L., Centrella M. (1990). Differential effects of continuous and transient treatment with parathyroid hormone related peptide (PTHrp) on bone collagen synthesis. Endocrinology, 126: 1806–1812. Search in Google Scholar

Carter S.D., Cromwell D., Combs G.L., Colombo T.R., Fanti P. (1996). The determination of serum concentrations of osteocalcin in growing pigs and its relationship to end-measures of bone mineralization. J. Anim. Sci., 74: 2719–2729. Search in Google Scholar

Cohrs I., Wachter S., Hansen K., Scheu T., Wilkens M., Grünberg W. (2022). A potential new biomarker to monitor the phosphorus balance in dry dairy cows. Anim. Feed Sci. Technol., 287: 115281. Search in Google Scholar

Drews J.E., Haese D., Kill J.L., Lemke L.L., Pimentel R.B., Molino J.P., Saravina A., D’Ávila Possatti C. (2016). Phosphorus on performance, hematological, biochemical, and bone parameters of growing pigs. Ciência Rural, Santa Maria, 46: 1076–1081. Search in Google Scholar

Ferretti J.L., Capozza R.F., Mondelo N., Zanchetta J.R. (1993). Interrelationships between densitometric, geometric and mechanical properties of rat femora: inferences concerning mechanical regulation of bone modelling. J. Bone Miner. Res., 8: 1389–1396. Search in Google Scholar

Gerlinger C., Oster M., Borgelt L., Reyer H., Muráni E., Ponsuksili S., Polley C., Vollmar B., Reichel M., Wolf P., Wimmers K. (2019). Physiological and transcriptional responses in weaned piglets fed diets with varying phosphorus and calcium levels. Nutrients, 11: 436–450. Search in Google Scholar

Gerlinger C., Oster M., Reyer H., Polley C., Vollmar B., Muráni E., Wimmers K., Wolf P. (2021). Effects of excessive or restricted phosphorus and calcium intake during early life on markers of bone architecture and composition in pigs. J. Anim. Physiol. Anim. Nutr., 105 (Suppl. 2): 52–62. Search in Google Scholar

Gerstenfeld L.C., Chipman S.D., Glowacki J., Lian J.B. (1987). Expression of differentiated function by mineralizing cultures of chicken osteoblasts. Dev. Biol., 122: 49–60. Search in Google Scholar

Greenblatt M.B., Tsai J.N., Wein M.N. (2017). Bone turnover markers in the diagnosis and monitoring of metabolic bone disease. Clin. Chem., 63: 464–474. Search in Google Scholar

Grela E.R., Muszyński S., Czech A., Donaldson J., Stanisławski P., Kapica M., Brezvyn O., Muzyka V., Kotsyumbas I., Tomaszewska E. (2020). Influence of phytase supplementation at increasing doses from 0 to 1500 FTU/kg on growth performance, nutrient digestibility and bone status in the grower-finisher pigs fed phosphorusdeficient diets. Animals, 10: 847. Search in Google Scholar

Gutiérrez O.M., McPherson A.L., Lin Y., Gilbert L.C., Ha S.W., Beck Jr. G.R. (2015). Impact of phosphorus-based food additives on bone and mineral metabolism. J. Clin. Endocrinol. Metab., 100: 4264–4271. Search in Google Scholar

Hastad C.W., Dritz S.S., Tokach M.D., Goodband R.D., Nelssen J.L., DeRouchey J.M., Boyd R.D., Johnston M.E. (2004). Phosphorus requirements of growing-finishing pigs reared in a commercial environment. J. Anim. Sci., 82: 2945–2952. Search in Google Scholar

Heaney R.P., Abrams S., Dawson-Huges B., Looker A., Marcus R., Matkovic V., Weaver C. (2000). Peak bone mass. Osteoporos. Int., 11: 985–1009. Search in Google Scholar

Huttunen M.H., Tillman I., Viljakainen H.T., Tuukkanen J., Peng Z.O., Pekkinen M., Lamberg-Allardt C.J.E. (2007). High dietary phosphate intake reduces bone strength in the growing rat skeleton. J. Bone Miner. Res., 22: 83–92. Search in Google Scholar

Katsumata S., Matsuzaki H., Uehara M., Suzuki K. (2015). Effects of dietary calcium supplementation on bone metabolism, kidney mineral concentrations, and kidney function in rats fed a highphosphorus diet. J. Nutr. Sci. Vitaminol., 61: 195–200. Search in Google Scholar

Konakov D.T., Petkov P.I., Stojanchev K.T. (2005). Influence of different phosphorus diets on bone parameters of growing pigs. Veterinarski Arhiv, 75: 243–252. Search in Google Scholar

Lall S.P. (2002). The Minerals. In: Fish Nutrition, 3rd ed., Halver J.E., Hardy R.W. (eds). Elsevier, Amsterdam, The Netherlands, pp. 259–308. Search in Google Scholar

Li T., Xing G., Shao Y., Zhang L., Li S., Lu L., Liu Z., Liao X., Luo X. (2020). Dietary calcium or phosphorus deficiency impairs the bone development by regulating related calcium or phosphorus metabolic utilization parameters of broilers. Poultry Sci., 99: 3207–3214. Search in Google Scholar

Liesegang B.A.L., Ursprung R.U., Gasser J.G., Sassi M.S., Risteli J.R., Riond J.L., Wanner M. (2002). Influence of dietary phosphorus deficiency with or without addition of fumaric acid to a diet in pigs on bone parameters. J. Anim. Physiol. Anim. Nutr., 86: 1–16. Search in Google Scholar

Liu S.B., Liao X.D., Lu L., Li S.F., Wang L., Zhang L.Y., Jiang Y., Luo X.G. (2017). Dietary non-phytate phosphorus requirement of broilers fed a conventional corn-soybean meal diet from 1 to 21 d of age. Poultry Sci., 96: 151–159. Search in Google Scholar

Masuyama R., Nakaya Y., Katsumata S., Kajita Y., Uehara M., Tanaka S., Sakai A., Kato S., Nakamura T., Suzuki K. (2003). Dietary calcium and phosphorus ratio regulates bone mineralization and turnover in vitamin D receptor knockout mice by affecting intestinal calcium and phosphorus absorption. J. Bone Miner. Res., 18: 1217–1226. Search in Google Scholar

Meulen M.C.H. van der, Jepsen K.J., Mikić B. (2001). Understanding bone strength: Size isn’t everything. Bone, 29: 101–104. Search in Google Scholar

Nicodemo M.L.F., Scott D., Buchan W., Duncan A., Robins S.P. (1998). Effects of variations in dietary calcium and phosphorus supply on plasma and bone osteocalcin concentrations and bone mineralization in growing pigs. Exp. Physiol., 83: 659–665. Search in Google Scholar

Nieto S., Kiefer C., de Souza K.M.R., Gonçalves L.M.P., Bonin M.N., Santos T.M.B., Carvalho K.C.N., Santos A.P. (2016). Digestible phosphorus levels for barrows from 50 to 80 kg. R. Bras. Zootec., 45: 242–249. Search in Google Scholar

NRC (2012). Nutrient requirements of swine. 11th ed. National Academy Press, Washington, DC. Penido M.G., Alon U.S. (2012). Phosphate homeostasis and its role in bone health. Pediatr. Nephrol., 27: 2039–2048. Search in Google Scholar

Pierre J.M. (2008). Transcription factors controlling osteoblastogenesis. Arch. Biochem. Biophys., 473: 98–105. Search in Google Scholar

Ren Y., Liu Y., Jiang K., Li L., Jiao N., Zhu Z., Zhang K., Jiang S., Yang W., Li Y. (2023). Effects of low-phosphorus diets supplemented with phytase on the production performance, phosphorus-calcium metabolism, and bone metabolism of aged Hy-Line Brown laying hens. Animals, 13: 1042. Search in Google Scholar

Rieger H., Ratert C., Wendt M., Schwennen C., Kamphues J. (2021). Comparative study on the chemical composition of different bones/parts of bones in growing pigs differently supplied with inorganic phosphorus and phytase. J. Anim. Physiol. Anim. Nutr., 105 (Suppl. 2): 106–118. Search in Google Scholar

Rizzoli R., Bonjour J. (2006). Physiology of calcium and phosphate homeostasis. In: Dynamics of bone and cartilage metabolism, 2nd edition, Seibel M.J., Robins S.P., Bilezikian J.P. (eds). Academic Press, New York, pp. 345–360. Search in Google Scholar

Selle P.H., Cowieson A.J., Ravindran V. (2009). Consequences of calcium interactions with phytate and phytase for poultry and pigs. Livest. Sci., 124: 126–141. Search in Google Scholar

Seeman E. (2003). Bone quality. Osteoporos. Int., 14: S3–S7. Search in Google Scholar

Serna J., Bergwitz C. (2020). Importance of dietary phosphorus for bone metabolism and healthy aging. Nutrients., 12: 3001. Search in Google Scholar

Shapiro R., Heaney R.P. (2003). Co-dependence of calcium and phosphorus for growth and bone development under conditions of varying deficiency. Bone, 32: 532–540. Search in Google Scholar

Skiba G., Sobol M., Raj S. (2016). Bone mineralization, geometry and strength in pigs growing from 56 to 115 day of life as affected by body fatness. J. Anim. Feed Sci., 25: 302–308. Search in Google Scholar

Skiba G., Sobol M., Raj S. (2018). Bone mineralisation, mechanical properties and body phosphorus content in growing gilts as affected by protein or feed intake during depletion–repletion periods. Arch. Anim. Nutr., 72: 478–491. Search in Google Scholar

Sobol M., Skiba G., Raj S., Kowalczyk P., Kramkowski P., Świątkiewicz M., Grela E.R. (2022). Chemical body composition and bone growth of young pigs as affected by deficient, adequate and excess dietary phosphorus supply. Ann. Anim. Sci., 22: 363–372. Search in Google Scholar

Sørensen K.U., Tauson A.H., Poulsen H.D. (2018 a). Long term differentiated phosphorus supply from below to above requirement affects nutrient balance and retention, body weight gain and bone growth in growing-finishing pigs. Livest. Sci., 211: 14–20. Search in Google Scholar

Sørensen K.U., Kruger M.C., Hansen-Møller J., Poulsen H.D. (2018 b). Bone biochemical markers for assessment of bone responses to differentiated phosphorus supply in growing-finishing pigs. J. Anim. Sci., 96: 4693–4703. Search in Google Scholar

Sørensen K.U., Shiguetomi-Medina J.M., Poulsen H.D. (2019). Mineralisation of tubular bones are affected differently by low phosphorus supply in growing-finishing pigs. J. Sci. Food Agric., 99: 3628–3634. Search in Google Scholar

Suttle N.F. (2010). Mineral nutrition of livestock, 4th Edition, CABI, Wallingford, UK. Swelum A.A., Saadeldin I.M., Alowaimer A.N., Mahmoud A., Abouheif M.A. (2017). Impacts of restricted feeding and realimentation on bone development and plasma concentrations of bone-specific biomarkers in lambs. J. Anim. Feed Sci., 26: 116–122. Search in Google Scholar

Symeou V., Leinonen I., Kyriazakis I. (2014). Modelling phosphorus intake, digestion, retention and excretion in growing and finishing pigs: model description. Animal, 8: 1612–1621. Search in Google Scholar

Szulc P., Naylor K., Hoyle N.R., Eastell R., Leary E.T. (2017). Use of CTX-I and PINP as bone turnover markers: National Bone Health Alliance recommendations to standardize sample handling and patient preparation to reduce pre-analytical variability. Osteoporos Int., 28: 2541–2556. Search in Google Scholar

Teitelbaum S.L. (2000). Bone resorption by osteoclasts. Science, 289: 1504–1508. Search in Google Scholar

Valable A.S., Narcy A., Duclos M.J., Pomar C., Page G., Nasir Z., Magnin M., Létourneau-Montminy M.P. (2018). Effects of dietary calcium and phosphorus deficiency and subsequent recovery on broiler chicken growth performance and bone characteristics. Animal, 12: 1555–1563. Search in Google Scholar

Varley P.F., Sweeney T., Ryan M.T., O’Doherty J.V. (2011). The effect of phosphorus restriction during the weaner-grower phase on compensatory growth, serum osteocalcin and bone mineralization in gilts. Livest. Sci., 135: 282–288. Search in Google Scholar

Venäläinen E., Valaja J., Jalava T. (2006). Effects of dietary metabolisable energy, calcium and phosphorus on bone mineralisation, leg weakness and performance of broiler chickens. Br. Poult. Sci., 47: 301–310. Search in Google Scholar

Vier C.M., Dritz S.S., Wu F., Tokach M.D., de Rouchey J.M., Goodband R.D., Gonclaves M.A.D., Orland U.A.D., Chitakasempornkul K., Woodworth J.C. (2019). Standardized total tract digestible phosphorus requirement of 24 to 130 kg pigs. J. Anim. Sci., 97: 4023–4031. Search in Google Scholar

Wang Y.H., Liu Y., Buhl K., Rowe D.W. (2005). Comparison of the action of transient and continuous PTH on primary osteoblast cultures expressing differentiation stage-specific GFP. J. Bone Miner. Res., 20: 5–14. Search in Google Scholar

eISSN:
2300-8733
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine