[
Abbott R., Albach D., Ansell S., Arntzen J.W., Baird S.J.E., Bierne N., Boughman J., Brelsford A., Buerkle C.A., Buggs R., Butlin R.K., Dieckmann U., Eroukhmanoff F., Grill A., Cahan S.H., Hermansen J.S., Hewitt G., Hudson A.G., Jiggins C., Jones J., Keller B., Marczewski T., Mallet J., Martinez-Rodriguez P., Möst M., Mullen S., Nichols R., Nolte A.W., Parisod C., Pfennig K., Rice A.M., Ritchie M.G., Seifert B., Smadja C.M., Stelkens R., Szymura J.M., Väinölä R., Wolf J.B.W., Zinner D. (2013). Hybridization and speciation. J. Evol. Biol., 26: 229–246.10.1111/j.1420-9101.2012.02599.x
]Search in Google Scholar
[
Adavoudi R., Pilot M. (2022). Consequences of hybridization in mammals: A systematic review. Genes, 13: 50.10.3390/genes13010050
]Search in Google Scholar
[
Allen R., Ryan H., Davis B.W., King C., Frantz L., Irving-Pease E., Barnett R., Linderholm A., Loog L., Haile J., Lebrasseur O., White M., Kitchener A.C., Murphy W.J., Larson G. (2020). A mitochondrial genetic divergence proxy predicts the reproductive compatibility of mammalian hybrids. Proc. R. Soc. B Biol. Sci., 287: 20200690.10.1098/rspb.2020.0690
]Search in Google Scholar
[
Barreta J., Gutiérrez-Gil B., Iñiguez V., Saavedra V., Chiri R., Latorre E., Arranz J.J. (2013). Analysis of mitochondrial DNA in Bolivian llama, alpaca and vicuna populations: A contribution to the phylogeny of the South American camelids. Anim. Genet., 44: 158–168.10.1111/j.1365-2052.2012.02376.x
]Search in Google Scholar
[
Behjati S., Tarpey P.S. (2013). What is next generation sequencing? Arch. Dis. Child. Educ. Pract. Ed., 98: 236–238.10.1136/archdischild-2013-304340
]Search in Google Scholar
[
Beissinger T.M., Hirsch C.N., Sekhon R.S., Foerster J.M., Johnson J.M., Muttoni G., Vaillancourt B., Robin Buell C., Kaeppler S.M., de Leon N. (2013). Marker density and read depth for genotyping populations using genotyping-by-sequencing. Genetics, 193: 1073–1081.10.1534/genetics.112.147710
]Search in Google Scholar
[
Berbel-Filho W.M., Tatarenkov A., Pacheco G., Espírito-Santo H.M.V., Lira M.G., de Leaniz C.G., Avise J.C., Lima S.M.Q., Rodríguez-López C.M., Consuegra S. (2021). Against the odds: Hybrid zones between mangrove killifish species with different mating systems. Genes, 12: 1486.10.3390/genes12101486
]Search in Google Scholar
[
Calderon M., More M.J., Gutierrez G.A., Abel Ponce de León F. (2021). Development of a 76K alpaca (Vicugna pacos) single nucleotide polymorphisms (SNPs) microarray. Genes, 12: 1–18.10.3390/genes12020291
]Search in Google Scholar
[
Cordeiro E.M.G., Pantoja-Gomez L.M., De Paiva J.B., Nascimento A.R.B., Omoto C., Michel A.P., Correa A.S. (2020). Hybridization and introgression between Helicoverpa armigera and H. zea: An adaptational bridge. BMC Evol. Biol., 20: 1–12.10.1186/s12862-020-01621-8
]Search in Google Scholar
[
Davey J.W., Hohenlohe P.A., Etter P.D., Boone J.Q., Catchen J.M., Blaxter M.L. (2011). Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat. Rev. Genet., 12: 499–510.10.1038/nrg3012
]Search in Google Scholar
[
De Donato M., Peters S.O., Mitchell S.E., Hussain T., Imumorin I.G. (2013). Genotyping-by-Sequencing (GBS): A novel, efficient and cost-effective genotyping method for cattle using next-generation sequencing. PLoS ONE, 8: 62137.10.1371/journal.pone.0062137
]Search in Google Scholar
[
Deschamps S., Llaca V., May G.D. (2012). Genotyping-by-sequencing in plants. Biology, 1: 460–483.10.3390/biology1030460
]Search in Google Scholar
[
Díaz-Maroto P., Rey-Iglesia A., Cartajena I., Núñez L., Westbury M.V., Varas V., Moraga M., Campos P.F., Orozco-terWenge P., Marín J.C., Hansen A.J. (2021). Ancient DNA reveals the lost domestication history of south american camelids in Northern Chile and across the andes. eLife, 10: e63390.10.7554/eLife.63390
]Search in Google Scholar
[
Di Rocco F., Posik D.M., Ripoli M.V., Díaz S., Maté M.L., Giovambattista G., Vidal-Rioja L. (2011). South American camelid illegal traffic detection by means of molecular markers. Leg. Med., 13: 289–292.10.1016/j.legalmed.2011.08.001
]Search in Google Scholar
[
Dupuis J.R., Brunet B.M.T., Bird H.M., Lumley L.M., Fagua G., Boyle B., Levesque R., Cusson M., Powell J.A., Sperling F.A.H. (2017). Genome-wide SNPs resolve phylogenetic relationships in the North American spruce budworm (Choristoneura fumiferana) species complex. Mol. Phylogenet. Evol., 111: 158–168.10.1016/j.ympev.2017.04.001
]Search in Google Scholar
[
Dupuis J.R., Sperling F.A.H. (2020). Phylogenomic test of mitochondrial clues to archaic ancestors in a group of hybridizing swallowtail butterflies. Mol. Phylogenet. Evol., 152: 106921.10.1016/j.ympev.2020.106921
]Search in Google Scholar
[
Echalar J., Barreta J. (2022). Introgression in domestic camelid productive systems in Bolivia. Small Rumin. Res., 214: 106742.10.1016/j.smallrumres.2022.106742
]Search in Google Scholar
[
Echalar J., Barreta J., Iniguez V., Romero F., Callisaya A.M., Saavedra V. (2020). Intraspecific genetic analysis of Bolivian alpacas and interspecific relationship with llamas and vicunas. Small Rumin. Res., 189: 106137.10.1016/j.smallrumres.2020.106137
]Search in Google Scholar
[
Ellegren H. (2014). Genome sequencing and population genomics in non-model organisms. Trends Ecol. Evol., 29: 51–63.10.1016/j.tree.2013.09.008
]Search in Google Scholar
[
Elshire R.J., Glaubitz J.C., Sun Q., Poland J.A., Kawamoto K., Buckler E.S., Mitchell S.E. (2011). A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE, 6: e19379.10.1371/journal.pone.0019379
]Search in Google Scholar
[
Fan R., Gu Z., Guang X., Marín J.C., Varas V., González B.A., Wheeler J.C., Hu Y., Li E., Sun X., Yang X., Zhang C., Gao W., He J., Munch K., Corbett-Detig R., Barbato M., Pan S., Zhan X., Bruford M.W., Dong C. (2020). Genomic analysis of the domestication and post-Spanish conquest evolution of the llama and alpaca. Genome Biol., 21: 1–26.10.1186/s13059-020-02080-6
]Search in Google Scholar
[
Forsdick N.J., Martini D., Brown L., Cross H.B., Maloney R.F., Steeves T.E., Knapp M. (2021). Genomic sequencing confirms absence of introgression despite past hybridisation between a critically endangered bird and its common congener. Glob. Ecol. Conserv., 28: e01681.10.1016/j.gecco.2021.e01681
]Search in Google Scholar
[
Gabryś J., Kij B., Kochan J., Bugno-Poniewierska M. (2021). Interspecific hybrids of animals in nature, breeding and science – a review. Ann. Anim. Sci., 21: 403–415.10.2478/aoas-2020-0082
]Search in Google Scholar
[
Germain E., Benhamou S., Poulle M.L. (2008). Spatio-temporal sharing between the European wildcat, the domestic cat and their hybrids. J. Zool., 276: 195–203.10.1111/j.1469-7998.2008.00479.x
]Search in Google Scholar
[
Graham C.F., Eberts R.L., Goncin U., Somers C.M. (2021). Spontaneous hybridization and introgression between walleye (Sander vitreus) and sauger (Sander canadensis) in two large reservoirs: Insights from genotyping by sequencing. Evol. Appl., 14: 965–982.10.1111/eva.13174
]Search in Google Scholar
[
Gurgul A., Miksza-Cybulska A., Szmatoła T., Jasielczuk I., Piestrzyńska-Kajtoch A., Fornal A., Semik-Gurgul E., Bugno-Poniewierska M. (2019 a). Genotyping-by-sequencing performance in selected livestock species. Genomics, 111: 186–195.10.1016/j.ygeno.2018.02.00229427639
]Search in Google Scholar
[
Gurgul A., Miksza-Cybulska A., Szmatoła T., Semik-Gurgul E., Jasielczuk I., Bugno-Poniewierska M., Figarski T., Kajtoch Ł. (2019 b). Evaluation of genotyping by sequencing for population genetics of sibling and hybridizing birds: an example using Syrian and Great Spotted Woodpeckers. J. Ornithol., 160: 287–294.10.1007/s10336-018-1601-9
]Search in Google Scholar
[
Kadwell M., Fernandez M., Stanley H.F., Baldi R., Wheeler J.C., Rosadio R., Bruford M.W. (2001). Genetic analysis reveals the wild ancestors of the llama and the alpaca. Proc. R. Soc. B Biol. Sci., 268: 2575–2584.10.1098/rspb.2001.1774
]Search in Google Scholar
[
Kim C., Guo H., Kong W., Chandnani R., Shuang L.S., Paterson A.H. (2016). Application of genotyping by sequencing technology to a variety of crop breeding programs. Plant Sci., 242: 14–22.10.1016/j.plantsci.2015.04.016
]Search in Google Scholar
[
Marín J.C., Romero K., Rivera R., Johnson W.E., González B.A. (2017). Y-chromosome and mtDNA variation confirms independent domestications and directional hybridization in South American camelids. Anim. Genet., 48: 591–595.10.1111/age.12570
]Search in Google Scholar
[
Marques D.A., Meier J.I., Seehausen O. (2019). A combinatorial view on speciation and adaptive radiation. Trends Ecol. Evol., 34: 531–544.10.1016/j.tree.2019.02.008
]Search in Google Scholar
[
Maté M.L., Di Rocco F., Zambelli A., Vidal-Rioja L. (2007). Mitochondrial heteroplasmy in Control Region DNA of South American camelids. Small Rumin. Res., 71: 123–129.10.1016/j.smallrumres.2006.04.016
]Search in Google Scholar
[
Maté M.L., Di Rocco F., Zambelli A., Vidal-Rioja L. (2004). Mitochondrial DNA structure and organization of the control region of South American camelids. Mol. Ecol. Notes, 4: 765–767.10.1111/j.1471-8286.2004.00744.x
]Search in Google Scholar
[
McFarlane S.E., Pemberton J.M. (2019). Detecting the true extent of introgression during anthropogenic hybridization. Trends Ecol. Evol., 34: 315–326.10.1016/j.tree.2018.12.013
]Search in Google Scholar
[
Melo C., Manunza A., Melo M., Olivera L., Amills M. (2012). Analysis of the mitochondrial diversity of alpacas in eight farming areas of the south of Peru, in: Fibre Production in South American Camelids and Other Fibre Animals. Wageningen Academic Publishers, pp. 87–91.10.3920/978-90-8686-727-1_10
]Search in Google Scholar
[
More M., Gutiérrez G., Rothschild M., Bertolini F., Abel Ponce De León F. (2019). Evaluation of SNP genotyping in alpacas using the bovine HD genotyping beadchip. Front. Genet., 10: 361.10.3389/fgene.2019.00361
]Search in Google Scholar
[
Myers E.A. (2021). Genome-wide data reveal extensive gene flow during the diversification of the western rattlesnakes (Viperidae: Crotalinae: Crotalus). Mol. Phylogenet. Evol., 165: 107313.10.1016/j.ympev.2021.107313
]Search in Google Scholar
[
Narum S.R., Buerkle C.A., Davey J.W., Miller M.R., Hohenlohe P.A. (2013). Genotyping-by-sequencing in ecological and conservation genomics. Mol. Ecol., 22: 2841–2847.10.1111/mec.12350
]Search in Google Scholar
[
Pacheco-Sierra G., Vázquez-Domínguez E., Pérez-Alquicira J., Suárez-Atilano M., Domínguez-Laso J. (2018). Ancestral hybridization yields evolutionary distinct hybrids lineages and species boundaries in crocodiles, posing unique conservation conundrums. Front. Ecol. Evol., 6: 138.10.3389/fevo.2018.00138
]Search in Google Scholar
[
Pazmiño D.A., van Herderden L., Simpfendorfer C.A., Junge C., Donnellan S.C., Hoyos-Padilla E.M., Duffy C.A.J., Huveneers C., Gillanders B.M., Butcher P.A., Maes G.E. (2019). Introgressive hybridisation between two widespread sharks in the east Pacific region. Mol. Phylogenet. Evol., 136: 119–127.10.1016/j.ympev.2019.04.013
]Search in Google Scholar
[
Pfennig K.S. (2021). Biased hybridization and its impact on adaptive introgression. Trends Ecol. Evol., 36: 488–497.10.1016/j.tree.2021.02.010
]Search in Google Scholar
[
Podbielska A., Piórkowska K. (2022). Examination of D-loop region and DBY gene as tools for identifying hybridisation in alpacas (Vicugna pacos) based on Polish populations. Small Rumin. Res., 211: 106690.10.1016/j.smallrumres.2022.106690
]Search in Google Scholar
[
Podbielska A., Piórkowska K., Szmatoła T. (2021). Microsatellite-based genetic structure and hybrid detection in alpacas bred in poland. Animals, 11: 2193.10.3390/ani11082193
]Search in Google Scholar
[
Poland J., Endelman J., Dawson J., Rutkoski J., Wu S., Manes Y., Dreisigacker S., Crossa J., Sánchez-Villeda H., Sorrells M., Jannink J.-L. (2012). Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome, 5.10.3835/plantgenome2012.06.0006
]Search in Google Scholar
[
Poland J.A., Rife T.W. (2012). Genotyping-by-sequencing for plant breeding and genetics. Plant Genome, 5.10.3835/plantgenome2012.05.0005
]Search in Google Scholar
[
Ramírez-Reyes T., Blair C., Flores-Villela O., Piñero D., Lathrop A., Murphy R. (2020). Phylogenomics and molecular species delimitation reveals great cryptic diversity of leaf-toed geckos (Phyllodactylidae: Phyllodactylus), ancient origins, and diversification in Mexico. Mol. Phylogenet.Evol., 150: 106880.10.1016/j.ympev.2020.106880
]Search in Google Scholar
[
Richardson M.F., Munyard K., Croft L.J., Allnutt T.R., Jackling F., Alshanbari F., Jevit M., Wright G.A., Cransberg R., Tibary A., Perelman P., Appleton B., Raudsepp T. (2019). Chromosome-level alpaca reference genome VicPac3.1 improves genomic insight into the biology of new world camelids. Front. Genet., 10: 586.10.3389/fgene.2019.00586
]Search in Google Scholar
[
Seneviratne S.S., Davidson P., Martin K., Irwin D.E. (2016). Low levels of hybridization across two contact zones among three species of woodpeckers (Sphyrapicus sapsuckers). J. Avian Biol., 47: 887–898.10.1111/jav.00946
]Search in Google Scholar
[
Sonah H., Bastien M., Iquira E., Tardivel A., Légaré G., Boyle B., Normandeau É., Laroche J., Larose S., Jean M., Belzile F. (2013). An improved genotyping by sequencing (GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping. PLoS ONE, 8: e54603.10.1371/journal.pone.0054603
]Search in Google Scholar
[
Stanley H.F., Kadwell M., Wheeler J.C. (1994). Molecular evolution of the family Camelidae: A mitochondrial DNA study. Proc. R. Soc. B Biol. Sci., 256: 1–6.10.1098/rspb.1994.0041
]Search in Google Scholar
[
Thermes C. (2014). Ten years of next-generation sequencing technology. Trends Genet., 30: 418–426.10.1016/j.tig.2014.07.001
]Search in Google Scholar
[
Torkamaneh D., Laroche J., Belzile F. (2016). Genome-wide SNP calling from genotyping by sequencing (GBS) data: A comparison of seven pipelines and two sequencing technologies. PLoS ONE, 11: 0161333.10.1371/journal.pone.0161333
]Search in Google Scholar
[
Varas V., Vásquez J.P., Rivera R., Longo A., Valdecantos P.A., Wheeler J.C., Johnson W.E., Marín J.C. (2020). Interbreeding among South American camelids threatens species integrity. J. Arid Environ., 181: 104249.10.1016/j.jaridenv.2020.104249
]Search in Google Scholar
[
Wheeler J.C. (1995 a). Evolution and present situation of the South American camelidae. Biol. J. Linn. Soc., 54: 271–295.10.1016/0024-4066(95)90021-7
]Search in Google Scholar
[
Wheeler J.C., Russel A.J.F., Redden H. (1995 b). Llamas and Alpacas: Pre-conquest breeds and post-conquest hybrids. J. Archaeol. Sci., 22: 833–840.10.1016/0305-4403(95)90012-8
]Search in Google Scholar
[
Wheeler J.C. (2012). South American camelids – past, present and future. J. Camelid Sci., 5: 1–24.
]Search in Google Scholar
[
Yadav A.D., Sahu J.D., Dubey A.D., Gadpayle R.D., Kiran Barwa D., Kashyap K., Yadav A., Jain A., Sahu J., Dubey A., Gadpayle R., Kiran Barwa D., Verma U. (2019). An overview on species hybridization in animals. Int. J. Fauna Biol. Stud., 6: 36–42.
]Search in Google Scholar
[
Yue G.H., Wang L. (2017). Current status of genome sequencing and its applications in aquaculture. Aquaculture, 468: 337–347.10.1016/j.aquaculture.2016.10.036
]Search in Google Scholar