Accesso libero

Dose-response effects of the Savory (Satureja khuzistanica) essential oil and extract on rumen fermentation characteristics, microbial protein synthesis and methane production in vitro

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Abbasi A., Maddah S.M., Mahboubi A., Khaledi A., Vazini H., Esmaeili D. (2017). Investigate the inhibitory effects of Satureja khuzestanica essential oil against housekeeping fabD and exoA genes of Pseudomonas aeruginosa from hospital isolates using RT-PCR technique. Ann. Med. Health Sci. Res., 7: 246–250. Search in Google Scholar

Adams R.P. (2007). Identification of essential oil components by gas chromatography/ mass spectroscopy, Allured Publishing Corporation, Illinois. Search in Google Scholar

AOAC (2000). Official Methods of Analysis. Association of Official Analytical Chemists (AOAC). VA, USA, Arlington, 17th ed. Search in Google Scholar

Belanche A., De la Fuente G., Pinloche E., Newbold C.J., Balcells J. (2012). Effect of diet and absence of protozoa on the rumen microbial community and on the representativeness of bacterial fractions used in the determination of microbial protein synthesis. J. Anim. Sci., 90: 3924–3936. Search in Google Scholar

Benchaar C., Greathead H. (2011). Essential oils and opportunities to mitigate enteric methane emissions from ruminants. Anim. Feed Sci. Technol., 166: 338–355. Search in Google Scholar

Benchaar C., Duynisveld J., Charmley E. (2006). Effects of monensin and increasing dose levels of a mixture of essential oil compounds on intake, digestion and growth performance of beef cattle. Can. J. Anim. Sci., 86: 91–96. Search in Google Scholar

Benchaar C., Chaves A., Fraser G., Beauchemin K., McAllister T. (2007). Effects of essential oils and their components on in vitro rumen microbial fermentation. Can. J. Anim. Sci., 87: 413–419. Search in Google Scholar

Blümmel M., Makkar H., Becker K. (1997 a). In vitro gas production: a technique revisited. J. Anim. Physiol. Anim. Nutr., 77: 24–34.10.1111/j.1439-0396.1997.tb00734.x Search in Google Scholar

Blümmel M., Steingab H., Becker K. (1997 b). The relationship between in vitro gas production, in vitro microbial biomass yield and N-15 incorporation and its implications for the prediction of voluntary feed intake of roughages. Br. J. Nutr., 77: 911–921.10.1079/BJN19970089 Search in Google Scholar

Bodas R., Prieto N., García-González R., Andrés S., Giráldez F.J., López S. (2012). Manipulation of rumen fermentation and methane production with plant secondary metabolites. Anim. Feed Sci. Technol., 176: 78–93. Search in Google Scholar

Broderick G., Kang J. (1980). Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci., 63: 64–75. Search in Google Scholar

Broudiscou L.-P., Papon Y., Broudiscou A.F. (2002). Effects of dry plant extracts on feed degradation and the production of rumen microbial biomass in a dual outflow fermenter. Anim. Feed Sci. Technol., 101: 183–189. Search in Google Scholar

Burt S. (2004). Essential oils: their antibacterial properties and potential applications in foods – a review. Int. J. Food Microbiol., 94: 223–253. Search in Google Scholar

Busquet M., Calsamiglia S., Ferret A., Kamel C. (2005). Screening for effects of plant extracts and active compounds of plants on dairy cattle rumen microbial fermentation in a continuous culture system. Anim. Feed Sci. Technol., 123: 597–613. Search in Google Scholar

Calabrò S. (2015). Plant secondary metabolites. Rumen microbiology: From evolution to revolution, Springer, New Delhi, India. Search in Google Scholar

Calsamiglia S., Busquet M., Cardozo P.W., Castillejos L., Ferret A. (2007). Invited review: Essential oils as modifiers of rumen microbial fermentation. J. Dairy Sci., 90: 2580–2595. Search in Google Scholar

Cardozo P., Calsamiglia S., Ferret A., Kamel C. (2006). Effects of alfalfa extract, anise, capsicum, and a mixture of cinnamaldehyde and eugenol on ruminal fermentation and protein degradation in beef heifers fed a high-concentrate diet. J. Anim. Sci., 84: 2801–2808. Search in Google Scholar

Castillejos L., Calsamiglia S., Ferret A. (2006). Effect of essential oil active compounds on rumen microbial fermentation and nutrient flow in in vitro systems. J. Dairy Sci., 89: 2649–2658. Search in Google Scholar

Castillejos L., Calsamiglia S., Ferret A., Losa R. (2007). Effects of dose and adaptation time of a specific blend of essential oil compounds on rumen fermentation. Anim. Feed Sci. Technol., 132: 186–201. Search in Google Scholar

Chaves A., Stanford K., Gibson L., McAllister T., Benchaar C. (2008). Effects of carvacrol and cinnamaldehyde on intake, rumen fermentation, growth performance, and carcass characteristics of growing lambs. Anim. Feed Sci. Technol., 145: 396–408. Search in Google Scholar

Christaki E., Bonos E., Giannenas I., Florou-Paneri P. (2012). Aromatic plants as a source of bioactive compounds. Agriculture, 2: 228–243. Search in Google Scholar

Cieslak A., Szumacher-Strabel M., Stochmal A., Oleszek W. (2013). Plant components with specific activities against rumen methanogens. Animal, 7: 253–265. Search in Google Scholar

Cotta M.A., Russell J.B., (1997). Digestion of nitrogen in the rumen: a model for metabolism of nitrogen compounds in gastrointestinal environments. In: Gastrointestinal microbiology, Mackie R.I., White B.A. (eds). Boston, US, Springer, pp. 380–423.10.1007/978-1-4615-4111-0_11 Search in Google Scholar

Dehority B.A. (2003). Rumen microbiology. Nottingham, Nottingham University Press, 372 pp. Search in Google Scholar

Dewanto V., Wu X., Adom K.K., Liu R.H. (2002). Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem., 50: 3010–3014. Search in Google Scholar

Dorman H., Deans S.G. (2000). Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J. Appl. Microbiol., 88: 308–316. Search in Google Scholar

El-Zaiat H.M., Abdalla A.L. (2019). Potentials of patchouli (Pogostemon cablin) essential oil on ruminal methanogenesis, feed degradability, and enzyme activities in vitro. Environ. Sci. Pollut. Res., 26: 30220–30228. Search in Google Scholar

El-Zaiat H.M., Ré D.D., Patino H.O., Sallam S.M. (2019). Assessment of using dried vinasse rice to replace soybean meal in lambs diets: In vitro, lambs performance and economic evaluation. Small Rumin. Res., 173: 1–8. Search in Google Scholar

Fair R.J., Tor Y. (2014). Antibiotics and bacterial resistance in the 21st century. Perspect. Medicin. Chem., 6: 25–64. Search in Google Scholar

Finlay B.J., Esteban G., Clarke K.J., Williams A.G., Embley T.M., Hirt R.P. (1994). Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiol. Lett., 117: 157–161. Search in Google Scholar

France J., Dhanoa M., Theodorou M., Lister S., Davies D., Isac D. (1993). A model to interpret gas accumulation profiles associated with in vitro degradation of ruminant feeds. J. Theor. Biol., 163: 99–111. Search in Google Scholar

Garcia F., Colombatto D., Brunetti M.A., Martínez M.J., Moreno M.V., Scorcione Turcato M., Lucini E., Frossasco G., Martínez Ferrer J. (2020). The reduction of methane production in the in vitro ruminal fermentation of different substrates is linked with the chemical composition of the essential oil. Animals, 10: 786. Search in Google Scholar

Hadian J., Hossein Mirjalili M., Reza Kanani M., Salehnia A., Ganjipoor P. (2011). Phytochemical and morphological characterization of Satureja khuzistanica Jamzad populations from Iran. Chem. Biodivers., 8: 902–915. Search in Google Scholar

Hart K., Yáñez-Ruiz D.R., Duval S., McEwan N., Newbold C. (2008). Plant extracts to manipulate rumen fermentation. Anim. Feed Sci. Technol., 147: 8–35. Search in Google Scholar

Hashemi M.B., Niakousari M., Saharkhiz M.J., Eskandari M.H. (2012). Effect of Satureja khuzestanica essential oil on oxidative stability of sunflower oil during accelerated storage. Nat. Prod. Res., 26: 1458–1463. Search in Google Scholar

Honan M., Feng X., Tricarico J.M., Kebreab E. (2021). Feed additives as a strategic approach to reduce enteric methane production in cattle: modes of action, effectiveness and safety. Anim. Prod. Sci., doi: https://doi.org/10.1071/AN20295.10.1071/AN20295 Search in Google Scholar

Hundal J.S., Wadhwa M., Bakshi M.P.S. (2019). Herbal feed additives containing essential oil: 1. Impact on the nutritional worth of complete feed in vitro. Trop. Anim. Health Prod., 51: 1909–1917. Search in Google Scholar

Joch M., Kudrna V., Hakl J., Božik M., Homolka P., Illek J., Tyrolová Y., Výborná A. (2019). In vitro and in vivo potential of a blend of essential oil compounds to improve rumen fermentation and performance of dairy cows. Anim. Feed Sci. Technol., 251: 176–186. Search in Google Scholar

Jouany J.P., Morgavi D. (2007). Use of ‘natural’products as alternatives to antibiotic feed additives in ruminant production. Animal, 1: 1443–1466. Search in Google Scholar

Kahvand M., Malecky M. (2018). Dose-response effects of sage (Salvia officinalis) and yarrow (Achillea millefolium) essential oils on rumen fermentation in vitro. Ann. Anim. Sci., 18: 125–142. Search in Google Scholar

Kamra D.N., Agarwal N., Chaudhary L.C. (2006). Inhibition of ruminal methanogenesis by tropical plants containing secondary compounds. Int. Congr. Ser., 1293: 156–163. Search in Google Scholar

Khattab M., Abd El Tawab A., Hadhoud F., Shaaban M. (2020). Utilizing of celery and thyme as ruminal fermentation and digestibility modifier and reducing gas production. Int. J. Dairy Sci., 15: 22–27. Search in Google Scholar

Khiaosa-Ard R., Zebeli Q. (2013). Meta-analysis of the effects of essential oils and their bioactive compounds on rumen fermentation characteristics and feed efficiency in ruminants. J. Anim. Sci., 91: 1819–1830. Search in Google Scholar

Kholif A.E., Olafadehan O.A. (2021). Essential oils and phytogenic feed additives in ruminant diet: chemistry, ruminal microbiota and fermentation, feed utilization and productive performance. Phytochem. Rev. https://doi.org/10.1007/s11101-021-09739-3.10.1007/s11101-021-09739-3 Search in Google Scholar

Kim H., Jung E., Lee H.G., Kim B., Cho S., Lee S., Kwon I., Seo J. (2019). Essential oil mixture on rumen fermentation and microbial community – an in vitro study. Asian-Australas J. Anim. Sci., 32: 808. Search in Google Scholar

Lemos B.J.M., Souza F.M., Arnhold E., Conceição E.C., Couto V.R.M., Fernandes J.J.R. (2021). Effects of plant extracts from Stryphnodendron adstringens (mart.) coville, Lafoensia pacari a. st.-hil, copaifera spp., and Pterodon emarginatus Vogel on in vitro rumen fermentation. J. Anim. Physiol. Anim. Nutr., 105: 639–652. Search in Google Scholar

Liu W.-R., Qiao W.-L., Liu Z.-Z., Wang X.-H., Jiang R., Li S.-Y., Shi R.-B., She G.-M. (2013). Gaultheria: Phytochemical and pharmacological characteristics. Molecules, 18: 12071–12108. Search in Google Scholar

Lowry J., Kennedy P. (1996). Fermentation of flavonols by rumen organisms. Proc. Australian Society of Animal Production, pp. 366–366. Search in Google Scholar

Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193: 265–275. Search in Google Scholar

Luis J., Pérez R.M., González F.V. (2007). UV-B radiation effects on foliar concentrations of rosmarinic and carnosic acids in rosemary plants. Food Chem., 101: 1211–1215. Search in Google Scholar

Mahboubi M., Kazempour N. (2016). Antioxidant and antimicrobial activity of Satureja khuzistanica Jamzad essential oil, ethanol and aqueous extracts. Biharean Biologist, pp. 1–12. Search in Google Scholar

Makkar H., Sharma O., Dawra R., Negi S. (1982). Simple determination of microbial protein in rumen liquor. J. Dairy Sci., 65: 2170–2173. Search in Google Scholar

Makkar H.P.S., Blümmel M., Becker K. (1995). Formation of complexes between polyvinyl pyrrolidones or polyethylene glycols and tannins, and their implication in gas production and true digestibility in in vitro techniques. Br. J. Nutr., 73: 897–913. Search in Google Scholar

McDougall E.I. (1948). Studies on ruminant saliva. 1. The composition and output of sheep’s saliva. Biochem. J., 43: 99–109. Search in Google Scholar

Menke K., Steingass H. (1988). Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev., 28: 7–55. Search in Google Scholar

Minson D.J. (1997). Ruminants: the protein producers. Biologist, 44: 463–464. Search in Google Scholar

Moss A.R., Jouany J.-P., Newbold J. (2000). Methane production by ruminants: its contribution to global warming. Ann. Zootech., 49: 231–253. Search in Google Scholar

Nagaraja T.G., Newbold C.J., Van Nevel C.J., Demeyer D.I., (1997). Manipulation of ruminal fermentation. In: The rumen microbial ecosystem, Hobson P.N., Stewart C.S. (eds.). Dordrecht, Springer, pp. 523–632.10.1007/978-94-009-1453-7_13 Search in Google Scholar

Nel T.C., Hassen A., Akanmu A.M., Adejoro F.A. (2021). Use of essential oils in combination with fibrolytic enzymes to decrease in vitro ruminal methane production. S. Afr. J. Anim. Sci., 50: 680–686. Search in Google Scholar

Nolan J.V., Dobos R.C. (2005). Nitrogen transactions in ruminants. In: Quantitative aspects of ruminant digestion and metabolism, Dijkstra J., Forbes J.M., France J. (eds.). Walingford, UK, CABI Publishing, pp. 177–206.10.1079/9780851998145.0177 Search in Google Scholar

Oh J., Harper M., Hristov A. (2019). Effects of lowering crude protein supply alone or in a combination with essential oils on productivity, rumen function and nutrient utilization in dairy cows. Animal, 13: 2510–2518. Search in Google Scholar

Olijhoek D., Hellwing A.L.F., Grevsen K., Haveman L., Chowdhury M.R., Løvendahl P., Weisbjerg M.R., Noel S.J., Højberg O., Wiking L. (2019). Effect of dried oregano (Origanum vulgare L.) plant material in feed on methane production, rumen fermentation, nutrient digestibility, and milk fatty acid composition in dairy cows. J. Dairy Sci., 102: 9902–9918. Search in Google Scholar

Oskoueian E., Abdullah N., Oskoueian A. (2013). Effects of flavonoids on rumen fermentation activity, methane production, and microbial population. Bio. Med. Res. Int., 2013: 1–8. Search in Google Scholar

Ottenstein D.M., Bartley D.A. (1971). Separation of free acids C2-C5 in diluted aqueous solution column technology. J. Chromatogr. Sci., 9: 673–681. Search in Google Scholar

Patra A., Kamra D., Agarwal N. (2006). Effect of plant extracts on in vitro methanogenesis, enzyme activities and fermentation of feed in rumen liquor of buffalo. Anim. Feed Sci. Technol., 128: 276–291. Search in Google Scholar

Patra A.K., Saxena J. (2010). A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. Phytochemistry, 71: 1198–1222. Search in Google Scholar

Patra A.K., Yu Z. (2012). Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbial populations. Appl. Environ. Microbiol., 78: 4271–4280. Search in Google Scholar

Patra A.K., Yu Z. (2013). Effects of gas composition in headspace and bicarbonate concentrations in media on gas and methane production, degradability, and rumen fermentation using in vitro gas production techniques. J. Dairy Sci., 96: 4592–4600. Search in Google Scholar

Russell J.B., Hespell R.B. (1981). Microbial rumen fermentation. J. Dairy Sci., 64: 1153–1169. Search in Google Scholar

SAS (2002). Statistical Analytical System Users Guide. SAS Institute, Cary, NC, USA. Search in Google Scholar

Sefidkon F., Ahmadi S. (2000). Essential oil of Satureja khuzistanica Jamzad. J. Essent. Oil Res., 12: 427–428. Search in Google Scholar

Singleton V.L., Rossi J.A. (1965). Colorimetry of total phenolics with phosphomolybdicphosphotungstic acid reagents. Am. J. Enol. Vitic., 16: 144–158. Search in Google Scholar

Skendi A., Irakli M., Chatzopoulou P. (2017). Analysis of phenolic compounds in Greek plants of Lamiaceae family by HPLC. J. Appl. Res. Med. Aromat. Plants, 6: 62–69. Search in Google Scholar

Stack R.J., Cotta M.A. (1986). Effect of 3-phenylpropanoic acid on growth of and cellulose utilization by cellulolytic ruminal bacteria. Appl. Environ. Microbiol., 52: 209–210. Search in Google Scholar

Stack R.J., Hungate R.E., Opsahl W.P. (1983). Phenylacetic acid stimulation of cellulose digestion by Ruminococcus albus 8. Appl. Environ. Microbiol., 46: 539–544. Search in Google Scholar

Stevanović Z.D., Bošnjak-Neumüller J., Pajić-Lijaković I., Raj J., Vasiljević M. (2018). Essential oils as feed additives – future perspectives. Molecules, 23: 1717. Search in Google Scholar

Sylvester J., Karnati S., Yu Z., Newbold C.J., Firkins J. (2005). Evaluation of a real-time PCR assay quantifying the ruminal pool size and duodenal flow of protozoal nitrogen. J. Dairy Sci., 88: 2083–2095. Search in Google Scholar

Tekippe J., Hristov A.N., Heyler K., Zheljazkov V., Ferreira J., Cantrell C., Varga G. (2012). Effects of plants and essential oils on ruminal in vitro batch culture methane production and fermentation. Can. J. Anim. Sci., 92: 395–408. Search in Google Scholar

Torres R.N.S., Moura D.C., Ghedini C.P., Ezequiel J.M.B., Almeida M.T.C. (2020). Meta-analysis of the effects of essential oils on ruminal fermentation and performance of sheep. Small Rumin. Res., https://doi.org/10.1016/j.smallrumres.2020.106148.10.1016/j.smallrumres.2020.106148 Search in Google Scholar

Ungerfeld E.M. (2015). Limits to dihydrogen incorporation into electron sinks alternative to methanogenesis in ruminal fermentation. Front. Microbiol., 6: 1272. Search in Google Scholar

Van Nevel C., Demeyer D. (1996). Control of rumen methanogenesis. Environ. Monit. Assess., 42: 73–97. Search in Google Scholar

Van Soest P.J., Robertson J.B., Lewis B.A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74: 3583–3597. Search in Google Scholar

Wallace R.J. (2004). Antimicrobial properties of plant secondary metabolites. Proc. Nutr. Soc., 63: 621–629. Search in Google Scholar

Wang D., Huang J., Zhang Z., Tian X., Huang H., Yu Y., Zhang G., Ding J., Huang R. (2013). Influences of Portulaca oleracea extracts on in vitro methane emissions and rumen fermentation of forage. J. Food Agric. Environ., 11: 483–488. Search in Google Scholar

Williams A.G., Coleman G.S., (1992). Role of protozoa in the rumen. In: The rumen protozoa, New York, US. Springer, pp. 317–347.10.1007/978-1-4612-2776-2_10 Search in Google Scholar

Yadeghari S., Malecky M., Banadaky M.D., Navidshad B. (2015). Evaluating in vitro dose-response effects of Lavandula officinalis essential oil on rumen fermentation characteristics, methane production and ruminal acidosis. Vet. Res. Forum., 6: 285–293. Search in Google Scholar

Yu J., Cai L., Zhang J., Yang A., Wang Y., Zhang L., Guan L.L., Qi D. (2020). Effects of thymol supplementation on goat rumen fermentation and rumen microbiota in vitro. Microorganisms, https://doi.org/10.3390/microorganisms8081160.10.3390/microorganisms8081160746360732751619 Search in Google Scholar

Zhou R., Wu J., Zhang L., Liu L., Casper D.P., Jiao T., Liu T., Wang J., Lang X., Song S. (2019). Effects of oregano essential oil on the ruminal pH and microbial population of sheep. PLoS One, https://doi.org/10.1371/journal.pone.0217054.10.1371/journal.pone.0217054652722731107883 Search in Google Scholar

Zhou R., Wu J., Lang X., Liu L., Casper D.P., Wang C., Zhang L., Wei S. (2020). Effects of oregano essential oil on in vitro ruminal fermentation, methane production, and ruminal microbial community. J. Dairy Sci., 103: 2303–2314. Search in Google Scholar

eISSN:
2300-8733
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine