[Alzawqari M., Moghaddam H.N., Kermanshahi H., Raji A.R. (2011). The effect of desiccated ox bile supplementation on performance, fat digestibility, gut morphology and blood chemistry of broiler chickens fed tallow diets. J. Appl. Anim Res., 39: 169–174.]Search in Google Scholar
[Aviagen (2018). Ross Broiler Management Handbook. Aviagen Limited Newbridge Midlothian EH28 8SZ, Scotland, UK.]Search in Google Scholar
[Baltić B., Starčević M., Đorđević J., Mrdović B., Marković R. (2017). Importance of medium chain fatty acids in animal nutrition. In: IOP Conference Series: Earth Env. Sci., IOP Publishing, 85: 12048.]Search in Google Scholar
[Baltić B., Ćirić J., Šefer D., Radovanović A., Đorđević J., Glišić M., Bošković M., Baltić M.Ž., Đorđević V., Marković R. (2018). Effect of dietary supplementation with medium chain fatty acids on growth performance, intestinal histomorphology, lipid profile and intestinal microflora of broiler chickens. S. Afr. J. Anim. Sci., 48: 885–896.]Search in Google Scholar
[Barragan-Fonseca K.B., Gort G., Dicke M., van Loon J.J.A. (2019). Effects of dietary protein and carbohydrate on life-history traits and body protein and fat contents of the black soldier fly Hermetia illucens. Physiol. Entomol., 44: 148–159.]Search in Google Scholar
[Belghit I., Liland N.S., Waagbø R., Biancarosa I., Pelusio N., Li Y., Krogdahl Å., Lock E-J. (2018). Potential of insect-based diets for Atlantic salmon (Salmo salar). Aquaculture, 491: 72–81.]Search in Google Scholar
[Benzertiha A., Kierończyk B., Rawski M., Kołodziejski P., Bryszak M., Józefiak D. (2019). Insect oil as an alternative to palm oil and poultry fat in broiler chicken nutrition. Animals, 9: 116.]Search in Google Scholar
[Benzertiha A., Kierończyk B., Rawski M., Mikołajczak Z., Urbański A., Nogowski L., Józefiak D. (2020). Insect fat in animal nutrition: a review. Ann. Anim. Sci., 20: 1217–1240.]Search in Google Scholar
[Caligiani A., Marseglia A., Sorci A., Bonzanini F., Lolli V., Maistrello L., Sforza S. (2019). Influence of the killing method of the black soldier fly on its lipid composition. Food Res. Int., 116: 276–282.]Search in Google Scholar
[Canibe N., Højberg O., Badsberg J. H., Jensen B.B. (2007). Effect of feeding fermented liquid feed and fermented grain on gastrointestinal ecology and growth performance in piglets. J. Anim. Sci., 85: 2959–2971.]Search in Google Scholar
[Costantini L., Molinari R., Farinon B., Merendino N. (2017). Impact of omega-3 fatty acids on the gut microbiota. Int. J. Mol. Sci., 18: 2645.]Search in Google Scholar
[Cullere M., Schiavone A., Dabbou S., Gasco L., Dalle Zotte A. (2019). Meat quality and sensory traits of finisher broiler chickens fed with black soldier fly (Hermetia illucens L.) larvae fat as alternative fat source. Animals, 9: 1–15.]Search in Google Scholar
[Dabbou S., Ferrocino I., Gasco L., Schiavone A., Trocino A., Xiccato G., Lajusticia A.C.B., Maione S., Soglia D., Biasato I. (2020). Antimicrobial effects of black soldier fly and yellow mealworm fats and their impact on gut microbiota of growing rabbits. Animals, 10: 1292.]Search in Google Scholar
[Dabbou S., Lauwaerts A., Ferrocino I., Biasato I., Sirri F., Zampiga M., Bergagna S., Pagliasso G., Gariglio M., Colombino E. (2021). Modified black soldier fly larva fat in broiler diet: effects on performance, carcass traits, blood parameters, histomorphological features and gut microbiota. Animals, 11: 1837.]Search in Google Scholar
[Dalle Zotte A., Cullere M., Martins C., Alves S.P., Freire J.P.B., Falcão-e-Cunha L., Bessa R.J.B. (2018). Incorporation of black soldier fly (Hermetia illucens L.) larvae fat or extruded linseed in diets of growing rabbits and their effects on meat quality traits including detailed fatty acid composition. Meat Sci., 146: 50–58.]Search in Google Scholar
[Dumas A., Raggi T., Barkhouse J., Lewis E., Weltzien E. (2018). The oil fraction and partially defatted meal of black soldier fly larvae (Hermetia illucens) affect differently growth performance, feed efficiency, nutrient deposition, blood glucose and lipid digestibility of rainbow trout (Oncorhynchus mykiss). Aquaculture, 492: 24–34.]Search in Google Scholar
[Ewald N., Vidakovic A., Langeland M., Kiessling A., Sampels S., Lalander C. (2020). Fatty acid composition of black soldier fly larvae (Hermetia illucens) – possibilities and limitations for modification through diet. Waste Manage, 102: 40–47.]Search in Google Scholar
[Fallani M., Rigottier-Gois L., Aguilera M., Bridonneau C., Collignon A., Edwards C.A., Corthier G., Doré J. (2006). Clostridium difficile and Clostridium perfringens species detected in infant faecal microbiota using 16S rRNA targeted probes. J. Microbiol. Meth., 67: 150–161.]Search in Google Scholar
[Feng W., Xiong H., Wang W., Duan X., Yang T., Wu C., Yang F., Xiong J., Wang T., Wang C. (2019). Energy consumption analysis of lipid extraction from black soldier fly biomass. Energy, 185: 1076–1085.]Search in Google Scholar
[Franks A.H., Harmsen H.J.M., Raangs G.C., Jansen G.J., Schut F., Welling G.W. (1998). Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl. Environ. Microbiol., 64: 3336–3345.]Search in Google Scholar
[Gasco L., Dabbou S., Gai F., Brugiapaglia A., Schiavone A., Birolo M., Xiccato G., Trocino A. (2019). Quality and consumer acceptance of meat from rabbits fed diets in which soybean oil is replaced with black soldier fly and yellow mealworm fats. Animals, 9: 629.]Search in Google Scholar
[Hejdysz M., Kaczmarek S., Józefiak D., Jamroz D., Rutkowski A. (2018). Effect of different medium chain fatty acids, calcium butyrate, and salinomycin on performance, nutrient utilization, and fermentation products in gastrointestinal tracts of broiler chickens. J. Anim. Plant Sci., 28: 377–387.]Search in Google Scholar
[Heuel M., Sandrock C., Leiber F., Mathys A., Gold M., Zurbrügg C., Gangnat I.D.M., Kreuzer M., Terranova M. (2021). Black soldier fly larvae meal and fat can completely replace soybean cake and oil in diets for laying hens. Poultry Sci., 100: 101034.]Search in Google Scholar
[Heugten E. van, Martinez G., McComb A., Koutsos E. (2019). 285 Black soldier fly (Hermetia illucens) larvae oil improves growth performance of nursery pigs. J. Anim. Sci., 97(Supplement 3): 118.]Search in Google Scholar
[Jackowski J., Hurej M., Rój E., Poplonski J., Kosny L., Huszcza E. (2015). Antifeedant activity of xanthohumol and supercritical carbon dioxide extract of spent hops against stored product pests. B. Entomol. Res., 105: 456.]Search in Google Scholar
[Józefiak D., Kierończyk B., Juśkiewicz J., Zduńczyk Z., Rawski M., Długosz J., Sip A., Højberg O. (2013). Dietary nisin modulates the gastrointestinal microbial ecology and enhances growth performance of the broiler chickens. PLoS One, 8(12): 1–11.]Search in Google Scholar
[Józefiak D., Kierończyk B., Rawski M., Hejdysz M., Rutkowski A., Engberg R.M., Højberg O. (2014). Clostridium perfringens challenge and dietary fat type affect broiler chicken performance and fermentation in the gastrointestinal tract. Animal, 8: 912–922.]Search in Google Scholar
[Józefiak D., Józefiak A., Kierończyk B., Rawski M., Świątkiewicz S., Długosz J., Engberg R.M. (2016 a). Insects – a natural nutrient source for poultry – a review. Ann. Anim. Sci., 16: 297–313.10.1515/aoas-2016-0010]Search in Google Scholar
[Józefiak D., Świątkiewicz S., Kierończyk B., Rawski M., Długosz J., Engberg R.M., Højberg O. (2016 b). Clostridium perfringens challenge and dietary fat type modifies performance, microbiota composition and histomorphology of the broiler chicken gastrointestinal tract. Eur. Poultry Sci., 80.10.1399/eps.2016.130]Search in Google Scholar
[Kierończyk B., Rawski M., Długosz J., Świątkiewicz S., Józefiak D. (2016). Avian crop function – a review. Ann. Anim. Sci., 16: 653–678.]Search in Google Scholar
[Kierończyk B., Sassek M., Pruszynska-Oszmalek E., Kolodziejski P., Rawski M., Świątkiewicz S., Józefiak D. (2017). The physiological response of broiler chickens to the dietary supplementation of the bacteriocin nisin and ionophore coccidiostats. Poultry Sci., 96: 4026–4037.]Search in Google Scholar
[Kierończyk B., Rawski M., Józefiak A., Mazurkiewicz J., Świątkiewicz S., Siwek M., Bednarczyk M., Szumacher-Strabel M., Cieślak A., Benzertiha A., Józefiak D. (2018). Effects of replacing soybean oil with selected insect fats on broilers. Anim. Feed Sci. Tech., 240: 170–183.]Search in Google Scholar
[Kierończyk B., Sypniewski J., Rawski M., Czekała W., Świątkiewicz S., Józefiak D. (2020). From waste to sustainable feed material: the effect of Hermetia illucens oil on the growth performance, nutrient digestibility, and gastrointestinal tract morphometry of broiler chickens. Ann. Anim. Sci., 20: 157–177.]Search in Google Scholar
[Kierończyk B., Sypniewski J., Mikołajczak Z., Rawski M., Pruszyńska-Oszmałek E., Sassek M., Kołodziejski P., Józefiak D. (2022). Replacement of soybean oil with cold-extracted fat from Hermetia illucens in young turkey diets: Effects on performance, nutrient digestibility, selected organ measurements, meat and liver tissue traits, intestinal microbiota modulation, and physiological and immunological status. Anim. Feed Tech., 286: 115210.]Search in Google Scholar
[Kim S.A., Rhee M.S. (2016). Highly enhanced bactericidal effects of medium chain fatty acids (caprylic, capric, and lauric acid) combined with edible plant essential oils (carvacrol, eugenol, β-resorcylic acid, trans-cinnamaldehyde, thymol, and vanillin) against Escherichia coli O15. Food Control, 60: 447–454.]Search in Google Scholar
[Kim B., Bang H.T., Jeong J.Y., Kim M., Kim K.H., Chun J.L., Ji S.Y. (2020 a). Effects of dietary supplementation of black soldier fly (Hermetia illucens) larvae oil on broiler health. J. Poultry Sci., 200070.10.2141/jpsa.0200070863040534899017]Search in Google Scholar
[Kim Y.B., Kim D.H., Jeong S.B., Lee J.W., Kim T.H., Lee H.G., Lee K.W. (2020 b). Black soldier fly larvae oil as an alternative fat source in broiler nutrition. Poultry Sci., 99: 3133–3143.10.1016/j.psj.2020.01.018759763732475450]Search in Google Scholar
[Li S., Ji H., Zhang B., Tian J., Zhou J., Yu H. (2016). Influence of black soldier fly (Hermetia illucens) larvae oil on growth performance, body composition, tissue fatty acid composition and lipid deposition in juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture, 465: 43–52.]Search in Google Scholar
[Lieberman S., Enig M.G., Preuss H.G. (2006). A review of monolaurin and lauric acid: natural virucidal and bactericidal agents. Altern. Complem. Ther., 12: 310–314.]Search in Google Scholar
[Lin C.-W., Huang T.-W., Peng Y.-J., Lin Y.-Y., Mersmann H.J., Ding S.-T. (2021). A novel chicken model of fatty liver disease induced by high cholesterol and low choline diets. Poultry Sci., 100: 100869.]Search in Google Scholar
[Mai H.C., Dao N.D., Lam T.D., Nguyen B.V., Nguyen D.C., Bach L.G. (2019). Purification process, physicochemical properties, and fatty acid composition of black soldier fly (Hermetia illucens Linnaeus) larvae oil. J. Am. Oil Chem. Soc., 96: 1303–1311.]Search in Google Scholar
[Mailund T. (2019). Manipulating data frames: dplyr. In: R Data Science Quick Reference, 109–60. Springer.10.1007/978-1-4842-4894-2_7]Search in Google Scholar
[Manz W., Szewzyk U., Ericsson P., Amann R., Schleifer K.H., Stenström T.A. (1993). In situ identification of bacteria in drinking water and adjoining biofilms by hybridization with 16S and 23S rRNA-directed fluorescent oligonucleotide probes. Appl. Environ. Microb., 59: 2293–2298.]Search in Google Scholar
[Melis R., Braca A., Mulas G., Sanna R., Spada S., Serra G., Fadda M.L., Roggio T., Uzzau S., Anedda R. (2018). Effect of freezing and drying processes on the molecular traits of edible yellow mealworm. Innov. Food Sci. Emerg., 48: 138–149.]Search in Google Scholar
[Mendiburu F.D., Simon R. (2015). Agricolae – ten years of an open source statistical tool for experiments in breeding, agriculture and biology. Peer J. Pre Prints, 3:e1404v1.]Search in Google Scholar
[Mentang F., Maita M., Ushio H., Ohshima T. (2011). Efficacy of silkworm (Bombyx mori L.) chrysalis oil as a lipid source in adult wistar rats. Food Chem., 127: 899–904.]Search in Google Scholar
[Moscoviz R., Trably E., Bernet N. (2016). Consistent 1,3-propanediol production from glycerol in mixed culture fermentation over a wide range of pH. Biotech. Biofuels, 9: 32.]Search in Google Scholar
[Neijat M., Habtewold J., Li S., Jing M., House J.D. (2020). Effect of dietary n-3 polyunsaturated fatty acids on the composition of cecal microbiome of Lohmann hens. Prostag. Leukotr. Ess., 162: 102182.]Search in Google Scholar
[Ogle D.H. (2016). Introductory fisheries analyses with R. Vol. 32. CRC Press.]Search in Google Scholar
[Poorghasemi M., Alireza S., Qotbi A.A.A., Laudadio V., Tufarelli V. (2013). Influence of dietary fat source on growth performance responses and carcass traits of broiler chicks. Asian Austral. J. Anim., 26: 705.]Search in Google Scholar
[Purschke B., Stegmann T., Schreiner M., Jäger H. (2017). Pilot-scale supercritical CO2 extraction of edible insect oil from Tenebrio molitor L. larvae – influence of extraction conditions on kinetics, defatting performance and compositional properties. Eur. J. Lipid Sci. Tech., 119: 1600134.]Search in Google Scholar
[Rasco D. (2020). An R Companion for Applied Statistics I: Basic Bivariate Techniques. SAGE Publications, Thousand Oaks, CA, USA.]Search in Google Scholar
[Rawski M., Kierończyk B., Długosz J., Świątkiewicz S., Józefiak D. (2016). Dietary probiotics affect gastrointestinal microbiota, histological structure and shell mineralization in turtles. PLoS One, 11(2): e0147859.]Search in Google Scholar
[Revelle W. (2017). An introduction to the psych package: Part I: Data entry and data description. Retrieved from: https://personality-project.org/r/psych/intro.pdf.]Search in Google Scholar
[Rodriguez-Sanchez R., Tres A., Sala R., Guardiola F., Barroeta A.C. (2019). Evolution of lipid classes and fatty acid digestibility along the gastrointestinal tract of broiler chickens fed different fat sources at different ages. Poultry Sci., 98: 1341–1353.]Search in Google Scholar
[Salzman N.H., de Jong H., Paterson Y., Harmsen H.J.M., Welling G.W., Bos N.A. (2002). Analysis of 16S libraries of mouse gastrointestinal microflora reveals a large new group of mouse intestinal bacteria. Microbiology, 148: 3651–3660.]Search in Google Scholar
[Schiavone A., Cullere M., De Marco M., Meneguz M., Biasato I., Bergagna S., Dezzutto D., Gai F., Dabbou S., Gasco L. (2017). Partial or total replacement of soybean oil by black soldier fly larvae (Hermetia illucens L.) fat in broiler diets: effect on growth performances, feed choice, blood traits, carcass characteristics and meat quality. Ital. J. Anim. Sci., 16: 93–100.]Search in Google Scholar
[Schiavone A., Dabbou S., De Marco M., Cullere M., Biasato I., Biasibetti E., Capucchio M.T., Bergagna S., Dezzutto D., Meneguz M., Gai F., Dalle Zotte A., Gasco L. (2018). Black soldier fly larva fat inclusion in finisher broiler chicken diet as an alternative fat source. Animal, 12: 2032–2039.]Search in Google Scholar
[Schumacker R., Tomek S. (2013). R Fundamentals. In: Understanding statistics using R, Schumacker R., Tomek S. (eds). Springer New York, USA, pp. 1–10.10.1007/978-1-4614-6227-9_1]Search in Google Scholar
[Sghir A., Gramet G., Suau A., Rochet V., Pochart P., Dore J. (2000). Quantification of bacterial groups within human fecal flora by oligonucleotide probe hybridization. Appl. Environ. Microbiol., 66: 2263–2266.]Search in Google Scholar
[Spranghers T., Ottoboni M., Klootwijk C., Ovyn A., Deboosere S., De Meulenaer B., Michiels J., Eeckhout M., De Clercq P., De Smet S. (2017). Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J. Sci. Food Agr., 97: 2594–2600.]Search in Google Scholar
[Sypniewski J., Kierończyk B., Benzertiha A., Mikołajczak Z., Pruszyńska-Oszmałek E., Kołodziejski P., Sassek M., Rawski M., Czekała W., Józefiak D. (2020). Replacement of soybean oil by Hermetia illucens fat in turkey nutrition: effect on performance, digestibility, microbial community, immune and physiological status and final product quality. Brit. Poultry Sci., 61: 294–302.]Search in Google Scholar
[Tancharoenrat P., Ravindran V., Zaefarian F., Ravindran G. (2013). Influence of age on the apparent metabolisable energy and total tract apparent fat digestibility of different fat sources for broiler chickens. Anim. Feed Sci. Tech., 186: 186–192.]Search in Google Scholar
[Timbermont L., Lanckriet A., Dewulf J., Nollet N., Schwarzer K., Haesebrouck F., Ducatelle R., Van Immerseel F. (2010). Control of Clostridium perfringens-induced necrotic enteritis in broilers by target-released butyric acid, fatty acids and essential oils. Avian Pathol., 39: 117–121.]Search in Google Scholar
[Weththasinghe P., Hansen J.Ø., Nøkland D., Lagos L., Rawski M., Øverland M. (2021). Full-Fat black soldier fly larvae (Hermetia illucens) meal and paste in extruded diets for Atlantic salmon (Salmo salar): effect on physical pellet quality, nutrient digestibility, nutrient utilization and growth performances. Aquaculture, 530: 735785.]Search in Google Scholar
[Xiang M.S.W., Tan J.K., Macia L. (2019). Fatty acids, gut bacteria, and immune cell function. Mol. Nutr. Fats, 151–164.10.1016/B978-0-12-811297-7.00011-1]Search in Google Scholar
[Zeiger K., Popp J., Becker A., Hankel J., Visscher C., Klein G., Meemken D. (2017). Lauric acid as feed additive – an approach to reducing Campylobacter spp. in broiler meat. PLoS One, 12(4): e0175693.]Search in Google Scholar
[Zeitz J.O., Fennhoff J., Kluge H., Stangl G.I., Eder K. (2015). Effects of dietary fats rich in lauric and myristic acid on performance, intestinal morphology, gut microbes, and meat quality in broilers. Poultry Sci., 94: 2404–2413.]Search in Google Scholar