Accesso libero

The Role of Arginine in Disease Prevention, Gut Microbiota Modulation, Growth Performance and the Immune System of Broiler Chicken – A Review

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Abbas H., Hilmi A., Surakka J., Apajalahti P.E.J. (2007). Identification of the most abundant Lactobacillus species in the crop of 1- and 5-week-old broiler chickens. Appl. Environ. Microb., 73: 7867–7873.10.1128/AEM.01128-07Search in Google Scholar

Abdukalykova S.T., Zhao X., Ruiz-Feria C.A. (2008). Arginine and vitamin E modulate the subpopulations of T lymphocytes in broiler chickens. Poultry Sci., 87: 50–55.10.3382/ps.2007-00315Search in Google Scholar

Aguzey H.A., Gao Z., Wu H., Cheng G. (2018). Influence of feed form and particle size on gizzard, intestinal morphology and microbiota composition of broiler chicken. Poultry Fish Wild Sci., 6: 196.10.4172/2375-446X.1000196Search in Google Scholar

Al-Daraji H.J., Salih A.M. (2012). The influence of dietary arginine supplementation on blood traits of broiler chickens. Pak. J. Nutr., 11: 258–264.10.3923/pjn.2012.258.264Search in Google Scholar

Al-Hassani A.S. (2011). Effect of dietary supplementation with different levels of arginine on some blood traits of laying hens. Intern. J. Poult. Sci., 10: 705–709.10.3923/ijps.2011.705.709Search in Google Scholar

Allen P.C. (1999). Effects of daily oral doses of L-arginine on coccidiosis infections in chickens. Poultry Sci., 78: 1506–1509.10.1093/ps/78.11.1506Search in Google Scholar

Amin H.J., Zamora S.A., Mc Millan D.D., Fick G.H., Butzner J.D., Parsons H.G. (2002). Arginine supplementation prevents necrotizing enterocolitis in the premature infant. J. Pediatr., 140: 425–431.10.1067/mpd.2002.123289Search in Google Scholar

Apajalahti J., Kettunen A. (2006). Microbes of the chicken gastrointestinal tract. In: Avian gut function in health and disease, Perry G.C. (ed.). Poultry Sci. Symp. Series, 28, CABI Publishing, Wallingford, pp. 113–121.10.1079/9781845931803.0124Search in Google Scholar

Ball R.O., Urschel K.L., Pencharz P.B. (2007). Nutritional consequences of interspecies differences in arginine and lysine metabolism. J. Nutr., 137: 1626S–1641S.10.1093/jn/137.6.1626SSearch in Google Scholar

Bistrain B.R. (2004). Practical recommendations for immune-enhancing diets. J. Nutr., 134: 2868–2872.10.1093/jn/134.10.2868SSearch in Google Scholar

Bronte V., Zanovello P. (2005). Regulation of immune responses by L-arginine metabolism. Nat. Rev. Immunol., 5: 641–654.10.1038/nri1668Search in Google Scholar

Caly D.L., D‘Inca R., Auclair E., Drider D. (2015). Alternatives to antibiotics to prevent necrotic enteritis in broiler chickens: a microbiologist’s perspective. Front. Microb., 6: 1336.10.3389/fmicb.2015.01336Search in Google Scholar

Chen J., Wang M., Kong Y., Ma H., Zou S. (2011). Comparison of the novel compounds creatine and pyruvate on lipid and protein metabolism in broiler chickens. Animal, 5: 1082–1089.10.1017/S1751731111000085Search in Google Scholar

Coburn L.A., Gong X., Singh K., Asim M., Scull B.P., Allaman M.M., Williams C.S., Rosen M.J., Washington M.K., Barry D.P., Piazuelo M.B., Casero R.A., Chaturvedi R., Zhao Z., Wilson K.T. (2012). L-arginine supplementation improves responses to injury and inflammation in dextran sulfate sodium colitis. PLoS ONE, 7: e33546.10.1371/journal.pone.0033546Search in Google Scholar

Corzo A., Moran Jr.E.T., Hoehler D. (2003). Arginine needs of heavy broiler males: applying the ideal protein concept. Poultry Sci., 82: 402–407.10.1093/ps/82.3.402Search in Google Scholar

Dahiya J.P., Hoehler D., Wilkie D.C., Van Kessel A.G., Drew M.D. (2005). Dietary glycine concentration affects intestinal Clostridium perfringens and lactobacilli populations in broiler chickens. Poultry Sci., 84: 1875–1885.10.1093/ps/84.12.1875Search in Google Scholar

Dalloul R.A., Lillehoj H.S. (2006). Poultry coccidiosis: recent advancements in control measures and vaccine development. Expert Rev. Vaccines, 5: 143–163.10.1586/14760584.5.1.143Search in Google Scholar

David L.A., Maurice C.F., Carmody R.N., Gootenberg D.B., Button J.E., Wolfe B.E. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505: 559–563.10.1038/nature12820Search in Google Scholar

De Gussem M. (2007). Coccidiosis in poultry: Review on diagnosis, control, prevention and interaction with overall gut health. Proc. 16th European Symposium on Poultry Nutrition, pp. 253–261.Search in Google Scholar

De Jonge W.J., Kwikkers K.L., te Velde A.A., van Deventer S.J.H., Nolte M.A., Mebius R.E., Ruijter J.M., Lamers M.C., Lamers W.H. (2002). Arginine deficiency affects early B cell maturation and lymphoid organ development in transgenic mice. J. Clin. Invest., 110: 1539–1548.10.1172/JCI0216143Search in Google Scholar

Dietert R.R., Austic R.E. (1994). Environment-immune interactions. Poultry Sci., 73: 1062–1076.10.3382/ps.0731062Search in Google Scholar

Ebrahimi M., Shahneh A.Z., Shivazad M., Pirsaraei Z.A., Tebianian M., Ruiz-Feria C.A., Adibmoradi M., Nourijelyani K., Mohamadnejad F. (2014). The effect of feeding excess arginine on lipogenic gene expression and growth performance in broilers. Brit. Poultry Sci., 55: 81–88.10.1080/00071668.2013.864381Search in Google Scholar

Efron D.T., Barbul A. (1998). Modulation of inflammation and immunity by arginine supplements. Curr. Opin. Clin. Nutr. Metab. Care, 1: 531–538.10.1097/00075197-199811000-00010Search in Google Scholar

Emadi M., Jahanshiri F., Kaveh K., Hair-Bejo M., Ideris A., Alimon A.R. (2011). Nutrition and immunity: The effects of the combination of arginine and tryptophan on growth performance, serum parameters and immune response in broiler chickens challenged with infectious bursal disease vaccine. Avian Pathol., 40: 63–72.10.1080/03079457.2010.539590Search in Google Scholar

Eriksson S., Chambers B.J., Rhen M. (2003). Nitric oxide produced by murine dendritic cells is cytotoxic for intracellular Salmonella enterica sv. Typhimurium. Scand. J. Immunol., 58: 493–502.10.1046/j.1365-3083.2003.01330.xSearch in Google Scholar

Evoy D., Lieberman M.D., Fahey T.J., Daly J.M. (1998). Immunonutrition: The role of argi-nine. Nutrition, 14: 611–617.10.1016/S0899-9007(98)00005-7Search in Google Scholar

Fackelmayer F.O. (2005). Protein arginine methyltransferases: guardians of the Arg? Trends Biochem. Sci., 30: 666–671.10.1016/j.tibs.2005.10.002Search in Google Scholar

Fernandes J.I.M., Murakami A.E., Martins E.N., Sakamoto M.I., Garcia E.R.M. (2009). Effect of arginine on the development of the pectoralis muscle and the diameter and the protein: deoxyribonucleic acid rate of its skeletal myofibers in broilers. Poultry Sci., 88: 1399–1406.10.3382/ps.2008-00214Search in Google Scholar

Gao T., Zhao M.M., Zhang L., Li J.L., Yu L.L., Lv P.A., Gao F., Zhou G.H. (2017). Effects of in ovo feeding of L-arginine on the development of lymphoid organs and small intestinal immune barrier function in posthatch broilers. Anim. Feed Sci. Technol., 225: 8–19.10.1016/j.anifeedsci.2017.01.004Search in Google Scholar

Gill S.R., Pop M., Deboy R.T., Eckburg B., Turnbaugh P.J., Samuel B.S. (2006). Metagenomic analysis of the human distal gut microbiome. Science, 312: 1355–1359.10.1126/science.1124234Search in Google Scholar

Guo Y.W., Shi B.L., Yan S.M., Xu Y.Q., Li J.L., Li T.Y. (2015). Effects of arginine on cytokines and nitric oxide synthesis in broilers. J. Anim. Plant. Sci., 25: 366–371.Search in Google Scholar

Hamer H.M., De Preter D., Windey K., Verbeke K. (2011). Functional analysis of colonic bacterial metabolism: relevant to health. Am. J. Physiol. Gastr. L., 302: G1–G9.10.1152/ajpgi.00048.2011Search in Google Scholar

Hanew K. (2000). The mechanism of arginine- and insulin-induced GH release in humans. Endocrinol. J., 47: 23–27.10.1507/endocrj.47.SupplMarch_S23Search in Google Scholar

Harley J.P., Prescott L.M. (1998). Laboratory exercises in microbiology (2nd ed.). W.M.C. Brown Publishers, New York, US.Search in Google Scholar

He Q., Tang H., Ren P., Kong X., Wu G., Yin Y., Wang Y. (2011). Dietary supplementation with L-arginine partially counteracts serum metabonome induced by weaning stress in piglets. J. Proteome Res., 10: 5214–5221.10.1021/pr200688uSearch in Google Scholar

Humphrey B.D., Klasing K.C. (2004). Modulation of nutrient metabolism and homeostasis by the immune system. World Poultry Sci. J., 60: 90–100.10.1079/WPS20037Search in Google Scholar

Jahanian R. (2009). Immunological responses as affected by dietary protein and arginine concentrations in starting broiler chicks. Poultry Sci., 88: 1818–1824.10.3382/ps.2008-00386Search in Google Scholar

Jiao P., Guo Y., Yang X., Long F. (2010). Effects of dietary arginine and methionine levels on broiler carcass traits and meat quality. J. Anim. Vet. Adv., 9: 1546–1551.10.3923/javaa.2010.1546.1551Search in Google Scholar

Khajali F., Wideman R.F. (2010). Dietary arginine: metabolic, environmental, immunological and physiological interrelationships. World Poultry Sci. J., 66: 751–766.10.1017/S0043933910000711Search in Google Scholar

Khajali F., Tahmasebi M., Hassanpour H., Akbari M.R., Qujeq D., Wideman R.F. (2011). Effects of supplementation of canola meal-based diets with arginine on performance, plasma nitric oxide, and carcass characteristics of broiler chickens grown at high altitude. Poultry Sci., 90: 2287–2294.10.3382/ps.2011-01618Search in Google Scholar

Kidd M.T., Peebles E.D., Whitmarsh S.K., Yeatman J.B., Wideman R.F. (2001). Growth and immunity of broiler chicks as affected by dietary arginine. Poultry Sci., 80: 1535–1542.10.1093/ps/80.11.1535Search in Google Scholar

Kim S.W., Mc Pherson R.L., Wu G. (2004). Dietary arginine supplementation enhances the growth of milk-fed young pigs. J. Nutr., 134: 625–630.10.1093/jn/134.3.625Search in Google Scholar

Klasing K.C. (2007). Nutrition and the immune system. Brit. Poultry Sci., 48: 525–537.10.1080/00071660701671336Search in Google Scholar

Kwak H., Austic R.E., Dietert R.R. (1999). Influence of dietary arginine concentration on lymphoid organ growth in chickens. Poultry Sci., 78: 1536–154.10.1093/ps/78.11.1536Search in Google Scholar

Labadan M.C., Hsu K.N., Austic R.E. (2001). Lysine and arginine requirements of broiler chickens at two- to three-week intervals to eight weeks of age. Poultry Sci., 80: 599–606.10.1093/ps/80.5.599Search in Google Scholar

Laika M., Jahanian R. (2017). Increase in dietary arginine level could ameliorate detrimental impacts of coccidial infection in broiler chickens. Livest. Sci., 195: 38–44.10.1016/j.livsci.2016.11.002Search in Google Scholar

Laparra J.M., Sanz Y. (2010). Interactions of gut microbiota with functional food components and nutraceuticals. Pharmacol. Res., 61: 219–225.10.1016/j.phrs.2009.11.001Search in Google Scholar

Lewis S. (1996). Avian biochemistry and molecular biology. Cambridge University Press, New Jersey, New York City, USA.Search in Google Scholar

Li P., Yin Y.L., Li D., Kim S.W., Wu G. (2007). Amino acids and immune function. Brit. J. Nutr., 98: 237–252.10.1017/S000711450769936XSearch in Google Scholar

Liu D., Guo S., Guo Y. (2012 a). Xylanase supplementation to a wheatbased diet alleviated the intestinal mucosal barrier impairment of broiler chickens challenged by Clostridium perfringens. Avian Pathol., 41: 291–298.10.1080/03079457.2012.68408922702457Search in Google Scholar

Liu X., Wu X., Yin Y., Liu Y., Geng M., Yang H., Wu G. (2012 b). Effects of dietary L-argi- nine or N-carbamylglutamate supplementation during late gestation of sows on the miR-15b/16, miR-221/222, VEGFA and eNOS expression in umbilical vein. Amino Acids, 42: 2111–2119.10.1007/s00726-011-0948-5335160521638020Search in Google Scholar

Lu J., Idris U., Harmon B., Hofacre C., Maurer J.J., Lee M.D. (2003). Diversity and succession of the intestinal bacterial community of the maturing broiler chicken. Appl. Env. Microb., 69: 6816–6824.10.1128/AEM.69.11.6816-6824.2003Search in Google Scholar

Luiking Y.C., Ten Have G.A., Wolfe R.R., Deutz N.E. (2012). Arginine de novo and nitric oxide production in disease states. Am. J. Physiol. Endocrinol. Metab., 303: e1177–1189.10.1152/ajpendo.00284.2012Search in Google Scholar

Luo Y., Zhang L., Li H., Smidt H., Wright A.G., Zhang K. (2017). Different types of dietary fibers trigger specific alterations in composition and predicted functions of colonic bacterial communities in BALB/c Mice. Front. Microbiol., 8: 966.10.3389/fmicb.2017.00966Search in Google Scholar

Ma C.S., Nichols K.E., Tangye S.G. (2007). Regulation of cellular and humoral immune responses by the SLAM and SAP families of molecules. Annu. Rev. Immunol., 25: 337–379.10.1146/annurev.immunol.25.022106.141651Search in Google Scholar

Mantis N.J., Rol N., Corthésy B. (2011). Secretory IgA’s complex roles in immunity and mucosal homeostasis in the gut mucosal. Immunology, 4: 603–611.10.1038/mi.2011.41Search in Google Scholar

Masoud A., Marziyeh E., Ahmad Z.S., Mahmoud S., Zarbakht A.P., Majid T., Keramat Y.Q. (2014). The effects of L-arginine on growth, small intestine, and immune system of broilers in starter period. Annu. New York Acad. Sci., 521: 72–87.Search in Google Scholar

Metzler-Zebeli B.U., Eklund M., Mosenthin R. (2009). Impact of osmoregulatory and methyl donor functions of betaine on intestinal health and performance in poultry. World Poultry Sci. J., 65: 419–442.10.1017/S0043933909000300Search in Google Scholar

Moncada S., Higgs A. (1993). The L-arginine-nitric oxide pathway. New Engl. J. Med., 329: 2002–2012.10.1056/NEJM199312303292706Search in Google Scholar

Moncada S., Palmer R.M.J., Higgs E.A. (1991). Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol. Rev., 43: 109–142.Search in Google Scholar

Mountzouris K.C., Tsirtsikos P., Kalamara E., Nitsch S., Schatzmayr G., Fegeros K. (2007). Evaluation of the efficacy of a probiotic containing Lactobacillus, Bifidobacterium, Enterococcus, and Pediococcus strains in promoting broiler performance and modulating cecal microflora composition and metabolic activities. Poultry Sci., 86: 309–317.10.1093/ps/86.2.309Search in Google Scholar

Munir K., Muneer M.A., Masaoud E., Tiwari A., Mahmud A., Chaudhry R.M., Rashid A. (2009). Dietary arginine stimulates humoral and cell-mediated immunity in chickens vaccinated and challenged against hydropericardium syndrome virus. Poultry Sci., 88: 1629–1638.10.3382/ps.2009-00152Search in Google Scholar

Newsholme P., Brennan L., Rubi B., Maechler P. (2005). New insights into amino acid metabolism, β-cell function and diabetes. Clin. Sci., 108: 185–194.10.1042/CS20040290Search in Google Scholar

NRC (1994). Nutrient Requirements of Poultry, 9th ed. National Academy Press, Washington, DC, USA.Search in Google Scholar

O‘Keefe S.J. (2008). Nutrition and colonic health: the critical role of the microbiota. Curr. Opin. Gastroen., 24: 51–58.10.1007/978-1-59745-112-3Search in Google Scholar

Ochoa J.B., Strange J., Kearney P., Gellin G., Endean E., Fitzpatrick E. (2001). Effects of L-arginine on the proliferation of T lymphocyte subpopulations. J.-Parenter. Enter. Nutr., 25: 23–29.10.1177/014860710102500123Search in Google Scholar

Ovington K.S., Smith N.C. (1992). Cytokines, free radicals and resistance to Eimeria. Parasitol. Today, 8: 422–426.10.1016/0169-4758(92)90196-9Search in Google Scholar

Perez-Carbajal C., Caldwell D., Farnell M., Stringfellow K., Pohl S., Casco G., Pro-Martinez A., Ruiz-Feria C.A. (2010). Immune response of broiler chickens fed different levels of arginine and vitamin E to a coccidiosis vaccine and Eimeria challenge. Poultry Sci., 89: 1870–1877.10.3382/ps.2010-00753Search in Google Scholar

Persia M.E., Young E.L., Utterback P.L., Parsons C.M. (2006). Effects of dietary ingredients and Eimeria acervulina infection on chick performance, apparent metabolizable energy, and amino acid digestibility. Poultry Sci., 85: 48–55.10.1093/ps/85.1.48Search in Google Scholar

Ravindran V. (2016). Feed-induced specific ileal endogenous amino acid losses: measurement and significance in the protein nutrition of monogastric animals. Anim. Feed Sci. Technol., 221: 304–313.10.1016/j.anifeedsci.2016.05.013Search in Google Scholar

Ren W., Yin Y., Liu G., Yu X., Li Y., Yang G., Li T., Wu G. (2012). Effect of dietary arginine supplementation on reproductive performance of mice with porcine circovirus type 2 (PCV2) infection. Amino Acids, 42: 2089–2094.10.1007/s00726-011-0942-ySearch in Google Scholar

Ren W., Chen S., Yin J., Duan J., Li T., Liu G., Feng Z., Tan B., Yin Y., Wu G. (2014 a). Dietary arginine supplementation of mice alters the microbial population and activates intestinal innate immunity. J. Nutr., 166: 988–995.10.3945/jn.114.19212024670969Search in Google Scholar

Ren W., Yin J., Wu M., Liu G., Yang G., Xion Y., Su D., Wu L., Li T., Chen S., Duan J., Yin Y., Wu G. (2014 b). Serum amino acids profile and the beneficial effects of L-arginine or L-glutamine supplementation in Dextran Sulfate Sodium Colitis. PLoS One, 9: e88335.10.1371/journal.pone.0088335391499224505477Search in Google Scholar

Rhoads J.M., Liu Y., Niu X., Surendran S., Wu G. (2008). Arginine stimulates cdx2-transformed intestinal epithelial cell migration via a mechanism requiring both nitric oxide and phosphorylation of p70 S6 kinase. J. Nutr., 138: 1652–1657.10.1093/jn/138.9.1652Search in Google Scholar

Round J.L., Mazmanian S.K. (2009). The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol., 9: 313–323.10.1038/nri2515Search in Google Scholar

Ruiz-Feria C.A. (2009). Concurrent supplementation of arginine, vitamin E, and vitamin C improve cardiopulmonary performance in broilers chickens. Poultry Sci., 88: 526–535.10.3382/ps.2008-00401Search in Google Scholar

Ruiz-Feria C.A., Kidd M.T., Wideman R.F. (2001). Plasma levels of arginine, ornithine, and urea and growth performance of broilers fed supplemental L-arginine during cool temperature exposure. Poultry Sci., 80: 358–369.10.1093/ps/80.3.358Search in Google Scholar

Ruiz-Feria C.A., Abdukalykova S.T. (2009). Arginine and vitamin E improve the antibody response to infectious bursal disease virus (IBDV) and sheep red blood cells in broiler chickens. Brit. Poultry Sci., 50: 291–297.10.1080/00071660902942759Search in Google Scholar

Shao Y., Guo Y., Wang Z. (2013). β-1, 3/1, 6-glucan alleviated intestinal mucosal barrier impairment of broiler chickens challenged with Salmonella enterica serovar Typhimurium. Poultry Sci., 92: 1764–1773.10.3382/ps.2013-03029Search in Google Scholar

Sharma J.M., Kim I.J., Rautenschlein S., Yeh H-Y. (2000). Infectious bursal disease virus of chickens: Pathogenesis and immunosuppression. Dev. Comp. Immunol., 24: 223–235.10.1016/S0145-305X(99)00074-9Search in Google Scholar

Stechmiller J.K., Langkamp-Henken B., Childress B., Herrlinger-Garcia K.A., Hudgens B., Tian J. (2005). Arginine supplementation does not enhance serum nitric oxide levels in elderly nursing home residents with pressure ulcers. Biol. Res. Nurs., 6: 289–299.10.1177/1099800405274732Search in Google Scholar

Sung Y.J., Hotchkiss J.H., Austic R.E., Dietert R.R. (1991). L-arginine dependent production of a reactive nitrogen intermediate by macrophages of a uricotelic species. J. Leukocyte Biol., 50: 49–56.10.1002/jlb.50.1.49Search in Google Scholar

Tan B., Li X.G., Kong X., Huang R., Ruan Z., Yao K., Deng Z., Xie M., Shinzato I., Yin Y., Wu G. (2009 a). Dietary L-arginine supplementation enhances the immune status in early-weaned piglets. Amino Acids, 37: 323–331.10.1007/s00726-008-0155-118712273Search in Google Scholar

Tan B., Yin Y., Liu Z., Li X., Xu H., Kong X., Huang R., Tang W., Shinzato I., Smith S., Wu G. (2009 b). Dietary L-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs. Amino Acids, 37: 169–175.10.1007/s00726-008-0148-018683021Search in Google Scholar

Tan B.E., Yin Y.L., Liu Z.Q., Tang W.J., Xu H.J., Konga X.F., Li X.G., Yao K., Gu W., Smith S.B., Wu G. (2011). Dietary L-arginine supplementation differentially regulates expression of fat-metabolic genes in porcine adipose tissue and skeletal muscle. J. Nutr. Biochem., 22: 441–445.10.1016/j.jnutbio.2010.03.012Search in Google Scholar

Tan J., Applegate T.J., Liu S., Guo Y., Eicher S.D. (2014). Supplemental dietary L-arginine attenuates intestinal mucosal disruption during coccidial vaccine challenge in broiler chickens. Brit. J. Nutr., 112:1098–109.10.1017/S0007114514001846Search in Google Scholar

Tan J.Z., Guo Y.M., Applegate T.J., Du E.C., Zhao X. (2015). Dietary L-arginine modulates immunosuppression in broilers inoculated with an intermediate strain of infectious bursa disease virus. J. Sci. Food Agric., 95: 126–135.10.1002/jsfa.6692Search in Google Scholar

Tayade C., Jaiswal T., Mishra S., Koti M. (2006 a). L-arginine stimulates immune response in chickens immunized with intermediate plus strain of infectious bursal disease vaccine. Vaccine, 24: 552–560.10.1016/j.vaccine.2005.08.05916168528Search in Google Scholar

Tayade C., Koti M., Mishra S.C. (2006 b). L-arginine stimulates intestinal intraepithelial lymphocyte functions and immune response in chickens orally immunized with live intermediate plus strain of infectious bursal disease vaccine. Vaccine, 24: 5473–5480.10.1016/j.vaccine.2006.03.086712647616723175Search in Google Scholar

Tomasello G., Tralongo P., Damiani P., Sinagra E., Di Trapani B., Zeenny M.N. (2014). Dismicrobism in inflammatory bowel disease and colorectal cancer: changes in response of colocytes. World J. Gastroenterol., 20: 18121–18130.10.3748/wjg.v20.i48.18121Search in Google Scholar

Uni Z., Ferket P. (2003). Enhancement of development of oviparous species by in ovo feeding. U.S. Regular Patent US 6,592,878 B2, Washington, DC., US.Search in Google Scholar

Van Den Berg T.P. (2000). Acute infectious bursal disease in poultry: A review. Avian Pathol., 29: 175–194.10.1080/03079450050045431Search in Google Scholar

Van Immerseel F., Rood J.I., Moore R.J., Titball R.W. (2009). Rethinking our understanding of the pathogenesis of necrotic enteritis in chickens. Trends Microbiol., 17: 32–36.10.1016/j.tim.2008.09.005Search in Google Scholar

Vermeulen A.N., Schaap D.C., Schetters T.M. (2001). Control of coccidiosis in chickens by vaccination. Vet. Parasitol., 100: 13–20.10.1016/S0304-4017(01)00479-4Search in Google Scholar

Wershil B.K., Furuta G.T. (2008). 4: Gastrointestinal mucosal immunity. J. Allergy Clin. Immunol., 121: S380–S383.10.1016/j.jaci.2007.10.023Search in Google Scholar

Williams R.B. (2005). Intercurrent coccidiosis and necrotic enteritis of chickens: rational, integrated disease management by maintenance of gut integrity. Avian Pathol., 34: 159–180.10.1080/03079450500112195Search in Google Scholar

Wu G. (2009). Amino acids: metabolism, functions, and nutrition. Amino Acids, 37: 1–17.10.1007/s00726-009-0269-0Search in Google Scholar

Wu L.Y., Fang Y.J., Guo X.Y. (2011). Dietary L-arginine supplementation beneficially regulates body fat deposition of meat-type ducks. Brit. Poultry Sci., 52: 221–226.10.1080/00071668.2011.559452Search in Google Scholar

Wu X., Wu Y.L., Yin Y.Q., Liu X.D., Liu Z.Q., Liu T.J., Li R., Huang L., Ruan Z., Deng Z. (2012). Effect of dietary arginine and N-carbamoylglutamate supplementation reproduction and gene expression of eNOS, VEGFA and PlGF1 in on in late pregnancy of sow placenta. Anim. Reprod. Sci., 132: 187–192.10.1016/j.anireprosci.2012.05.002Search in Google Scholar

Wylie K.M., Truty R.M., Sharpton T.J., Mihindukulasuriya K.A., Zhou Y., Gao H. (2012). Novel bacterial taxa in the human microbiome. PLoS ONE, 7: e35294.10.1371/journal.pone.0035294Search in Google Scholar

Xia Y., Dawson V.L., Dawson T.M., Snyder S.H., Zweier J.L. (1996). Nitric oxide synthase generates superoxide and nitric oxide in arginine-depleted cells leading to peroxynitrite-mediated cellular injury. Proc. Natl. Acad. Sci., 93: 6770–6774.10.1073/pnas.93.13.6770Search in Google Scholar

Xu S., Lin Y., Zeng D., Zhou M., Zeng Y., Wang H. (2018). Bacillus licheniformis normalize the ileum microbiota of chickens infected with necrotic enteritis. Sci. Rep., 8: 17–44.10.1038/s41598-018-20059-zSearch in Google Scholar

Yang H., Lin B.Q., Zhang L., Wang T., Du H.J. (2012). Effects of L-arginine and lactobacillus on growth performance, blood biochemical indexes and intestinal mucosal morphology of weanling piglets (in Chinese). J. Fujian Agric. Forestry Univ. (Nat. Sci. Ed.), 4: 515–519.Search in Google Scholar

Yao K., Yin Y.L., Chu W.Y., Liu Z.Q., Deng D., Li T.J., Huang R.L., Zhang J.S., Tan B., Wang W.C., Wu G.Y. (2008). Dietary arginine supplementation increases mTOR signaling activity in skeletal muscle of neonatal pigs. J. Nutr., 138: 867–872.10.1093/jn/138.5.867Search in Google Scholar

Yao K., Guan S., Li T., Huang R., Wu G., Ruan Z., Yin Y. (2011). Dietary L-arginine supplementation enhances intestinal development and expression of vascular endothelial growth factor in weanling piglets. Brit. J. Nutr., 105: 703–709.10.1017/S000711451000365XSearch in Google Scholar

Yin J., Ren W., Duan J., Wu L., Chen S., Li T., Yin Y., Wu G. (2014). Dietary arginine supplementation enhances intestinal expression of SLC7A7 and SLC7A1 and ameliorates growth depression in mycotoxin challenged pigs. Amino Acids, 46: 883–892.10.1007/s00726-013-1643-5Search in Google Scholar

Yu T.K., Caudell E.G., Smid C., Grimm E.A. (2000). IL-2 activation of NK cells: involvement of MKK1/2/ERK but not p38 kinase pathway. J. Immunol., 164: 6244–6251.10.4049/jimmunol.164.12.6244Search in Google Scholar

Zavarize K.C., Sartori J.R., Gonzales E., Pezzato A.C. (2012). Morphological changes of the intestinal mucosa of broilers and layers as affected by fasting before sample collection. Rev. Bras. Cienc. Avic., 14: 2002–2012.10.1590/S1516-635X2012000100004Search in Google Scholar

Zhang B., Lv Z., Li H., Guo S., Liu D., Guo Y. (2017). Dietary L-arginine inhibits intestinal Clostridium perfringens colonisation and attenuates intestinal mucosal injury in broiler chickens. Brit. J. Nutr., 118: 321–332.10.1017/S0007114517002094Search in Google Scholar

Zhang B., Lv Z., Li Z., Wang W., Li G., Guo Y. (2018). Dietary L-arginine supplementation alleviates the intestinal injury and modulates the gut microbiota in broiler chickens challenged by Clostridium perfringens. Front. Microbiol., 9: 1716.10.3389/fmicb.2018.01716Search in Google Scholar

Ziegler T.R., Evans M.E., Fernandez-Estivariz C., Jones D.P. (2013). Trophic and cyto-protective nutrition for intestinal adaptation, mucosal repair, and barrier function. Annu. Rev. Nutr., 23: 229–261.Search in Google Scholar

eISSN:
2300-8733
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine