Accesso libero

Identifying Biomarkers of Autophagy and Apoptosis in Transfected Nuclear Donor Cells and Transgenic Cloned Pig Embryos

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Agrawal H., Selokar N.L., Saini M., Singh M.K., Chauhan M.S., Palta P., Sin-gla S.K., Manik R.S. (2018). m-carboxycinnamic acid bishydroxamide improves developmental competence, reduces apoptosis and alters epigenetic status and gene expression pattern in cloned buffalo (Bubalus bubalis) embryos. Reprod. Domest. Anim., 53: 986–996.10.1111/rda.13198Search in Google Scholar

Boya P., González-Polo R.A., Casares N., Perfettini J.L., Dessen P., Larochet-te N., Métivier D., Meley D., Souquere S., Yoshimori T., Pierron G., Codo-gno P., Kroemer G. (2005). Inhibition of macroautophagy triggers apoptosis. Mol. Cell Biol., 25: 1025–1040.10.1128/MCB.25.3.1025-1040.2005Search in Google Scholar

Brill A., Torchinsky A., Carp H., Toder V. (1999). The role of apoptosis in normal and abnormal embryonic development. J. Assist. Reprod. Genet., 16: 512–519.10.1023/A:1020541019347Search in Google Scholar

Brink M.F., Bishop M.D., Pieper F.R. (2000). Developing efficient strategies for the generation of transgenic cattle which produce biopharmaceuticals in milk. Theriogenology, 53: 139–148.10.1016/S0093-691X(99)00247-2Search in Google Scholar

Brophy B., Smolenski G., Wheeler T., Wells D., L’ Huillier P., Laible G. (2003). Cloned transgenic cattle produce milk with higher levels of beta-casein and kappa-casein. Nat. Biotechnol., 21: 157–162.10.1038/nbt783Search in Google Scholar

Callesen M.M., Árnadóttir S.S., Lyskjaer I., Ørntoft M.W., Høyer S., Dagnaes-Hansen F., Liu Y., Li R., Callesen H., Rasmussen M.H., Berthelsen M.F., Thomsen M.K., Schweiger P.J., Jensen K.B., Laurberg S., Ørntoft T.F., Elver-løv-Jakobsen J.E., Andersen C.L. (2017). A genetically inducible porcine model of intestinal cancer. Mol. Oncol., 11: 1616–1629.10.1002/1878-0261.12136Search in Google Scholar

Campbell K.H., Mc Whir J., Ritchie W.A., Wilmut I. (1996). Sheep cloned by nuclear transfer from a cultured cell line. Nature, 380: 64–66.10.1038/380064a0Search in Google Scholar

Chi D., Zeng Y., Xu M., Si L., Qu X., Liu H., Li J. (2017). LC3-dependent autophagy in pig 2-cell cloned embryos could influence the degradation of maternal mRNA and the regulation of epigenetic modification. Cell. Reprogram., 19: 354–362.10.1089/cell.2017.0016Search in Google Scholar

Cibelli J.B., Stice S.L., Golueke P.J., Kane J.J., Jerry J., Blackwell C., Poncede León F.A., Robl J.M. (1998). Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science, 280: 1256–1258.10.1126/science.280.5367.1256Search in Google Scholar

Denning C., Dickinson P., Burl S., Wylie D., Fletcher J., Clark A.J. (2001). Gene targeting in primary fetal fibroblasts from sheep and pig. Clon. Stem Cells, 3: 221–231.10.1089/15362300152725945Search in Google Scholar

Deryugina E.I., Quigley J.P. (2006). Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev., 25: 9–34.10.1007/s10555-006-7886-9Search in Google Scholar

Fabian D., Koppel J., Maddox-Hyttel P. (2005). Apoptotic processes during mammalian preimplantation development. Theriogenology, 64: 221–231.10.1016/j.theriogenology.2004.11.022Search in Google Scholar

Feng X., Cao S., Wang H., Meng C., Li J., Jiang J., Qian Y., Su L., He Q., Zhang Q. (2015). Production of transgenic dairy goat expressing human α-lactalbumin by somatic cell nuclear transfer. Transgenic Res., 24: 73–85.10.1007/s11248-014-9818-8Search in Google Scholar

Galluzzi L., Maiuri M.C., Vitale I., Zischka H., Castedo M., Zitvogel L., Kro-emer G. (2007). Cell death modalities: classification and pathophysiological implications. Cell Death Differ., 14: 1237–1243.10.1038/sj.cdd.4402148Search in Google Scholar

Galoian K., Temple H.T., Galoyan A. (2012). mTORC1 inhibition and ECM-cell adhesion-independent drug resistance via PI3K-AKT and PI3K-RAS-MAPK feedback loops. Tumour Biol., 33: 885–890.10.1007/s13277-011-0315-xSearch in Google Scholar

Gómez M.C., Pope C.E. (2015). Cloning endangered felids by interspecies somatic cell nuclear transfer. Methods Mol. Biol., 1330: 133–152.10.1007/978-1-4939-2848-4_13Search in Google Scholar

Himaki T., Yokomine T.A., Sato M., Takao S., Miyoshi K., Yoshida M. (2011). Effects of trichostatin A on in vitro development and transgene function in somatic cell nuclear transfer embryos derived from transgenic Clawn miniature pig cells. Anim Sci. J., 81: 558–563.10.1111/j.1740-0929.2010.00772.xSearch in Google Scholar

Iguma L.T., Lisauskas S.F., Melo E.O., Franco M.M., Pivato I., Vianna G.R., Sou-sa R.V., Dode M.A., Aragão F.J., Rech E.L., Rumpf R. (2005). Development of bovine embryos reconstructed by nuclear transfer of transfected and non-transfected adult fibroblast cells. Genet. Mol. Res., 4: 55–66.Search in Google Scholar

Ji Q., Zhu K., Liu Z., Song Z., Huang Y., Zhao H., Chen Y., He Z., Mo D., Cong P. (2013). Improvement of porcine cloning efficiency by trichostain A through early-stage induction of embryo apoptosis. Theriogenology, 79: 815–823.10.1016/j.theriogenology.2012.12.010Search in Google Scholar

Jia L., Dourmashkin R.R., Allen P.D., Gray A.B., Newland A.C., Kelsey S.M. (1997). Inhibition of autophagy abrogates tumour necrosis factor alpha induced apoptosis in human T-lymphoblastic leukaemic cells. Br. J. Haematol., 98: 673–685.10.1046/j.1365-2141.1997.2623081.xSearch in Google Scholar

Jia L., Dourmashkin R.R., Allen P.D., Gray A.B., Newland A.C., Kelsey S.M. (2014). Self-consumption: the interplay of autophagy and apoptosis. Nat. Rev. Mol. Cell Biol., 15: 81–94.10.1038/nrm3735Search in Google Scholar

Jin L., Guo Q., Zhu H.Y., Xing X.X., Zhang G.L., Xuan M.F., Luo Q.R., Luo Z.B., Wang J.X., Yin X.J., Kang J.D. (2017). Quisinostat treatment improves histone acetylation and developmental competence of porcine somatic cell nuclear transfer embryos. Mol. Reprod. Dev., 84: 340–346.10.1002/mrd.22787Search in Google Scholar

Jin L., Guo Q., Zhang G.L., Xing X.X., Xuan M.F., Luo Q.R., Luo Z.B., Wang J.X., Yin X.J., Kang J.D. (2018). The histone deacetylase inhibitor, CI994, improves nuclear reprogramming and in vitro developmental potential of cloned pig embryos. Cell. Reprogram., 20: 205–213.10.1089/cell.2018.0001Search in Google Scholar

Kasinathan P., Knott J.G., Moreira P.N., Burnside A.S., Jerry D.J., Robl J.M. (2001). Effect of fibroblast donor cell age and cell cycle on development of bovine nuclear transfer embryos in vitro. Biol. Reprod., 64: 1487–1493.10.1095/biolreprod64.5.1487Search in Google Scholar

Keefer C.L. (2008). Lessons learned from nuclear transfer (cloning). Theriogenology, 69: 48–54.10.1016/j.theriogenology.2007.08.033Search in Google Scholar

Keefer C.L. (2015). Artificial cloning of domestic animals. Proc. Natl. Acad. Sci. USA, 112: 8874–8878.10.1073/pnas.1501718112Search in Google Scholar

Kim G.A., Lee E.M., Jin J.X., Lee S., Taweechaipaisankul A., Hwang J.I., Alam Z., Ahn C., Lee B.C. (2017). Generation of CMAHKO/GTKO/shTNFRI-Fc/HO-1 quadruple gene modified pigs. Transgenic Res., 26: 435–445.10.1007/s11248-017-0021-6Search in Google Scholar

Kim S.H., Zhao M.H., Liang S., Cui X.S., Kim N.H. (2015). Inhibition of cathepsin B activity reduces apoptosis by preventing cytochrome c release from mitochondria in porcine parthenotes. J. Reprod. Dev., 61: 261–268.10.1262/jrd.2015-019Search in Google Scholar

Knight Z.A., Shokat K.M. (2007). Chemically targeting the PI3K family. Biochem. Soc. Trans., 35: 245–249.10.1042/BST0350245Search in Google Scholar

Kolber-Simonds D., Lai L., Watt S.R., Denaro M., Arn S. (2004). Production of alpha-1,3-galactosyltransferase null pigs by means of nuclear transfer with fibroblasts bearing loss of heterozygosity mutations. Proc. Natl. Acad. Sci. USA, 101: 7335–7340.10.1073/pnas.0307819101Search in Google Scholar

Kwon D.J., Kim D.H., Hwang I.S., Kim D.E., Kim H.J., Kim J.S., Lee K., Im G.S., Lee J.W., Hwang S. (2017). Generation of α-1,3-galactosyltransferase knocked-out transgenic cloned pigs with knocked-in five human genes. Transgenic Res., 26: 153–163.10.1007/s11248-016-9979-8Search in Google Scholar

Lee H.R., Gupta M.K., Kim D.H., Hwang J.H., Kwon B., Lee H.T. (2016). Poly(ADP-ribosyl)ation is involved in pro-survival autophagy in porcine blastocysts. Mol. Reprod. Dev., 83: 37–49.10.1002/mrd.22588Search in Google Scholar

Lee P.S., Tsang S.W., Moses M.A., Trayes-Gibson Z., Hsiao L.L., Jensen R., Squil-lace R., Kwiatkowski D.J. (2010). Rapamycin-insensitive up-regulation of MMP2 and other genes in tuberous sclerosis complex 2-deficient lymphangioleiomyomatosis-like cells. Am. J. Respir. Cell Mol. Biol., 42: 227–234.10.1165/rcmb.2009-0050OCSearch in Google Scholar

Lee S., Jin J.X., Khoirinaya C., Kim G.A., Lee B.C. (2015). Lanosterol influences cytoplasmic maturation of pig oocytes in vitro and improves preimplantation development of cloned embryos. Theriogenology, 61: 261–268.Search in Google Scholar

Lee S.C., Lee H., Oh K.B., Hwang I.S., Yang H., Park M.R., Ock S.A., Woo J.S., Im G.S., Hwang S. (2017). Production and breeding of transgenic cloned pigs expressing human CD73. Dev. Reprod., 21: 157–165.10.12717/DR.2017.21.2.157Search in Google Scholar

Lee S.E., Hwang K.C., Sun S.C., Xu Y.N., Kim N.H. (2011). Modulation of autophagy influences development and apoptosis in mouse embryos developing in vitro. Mol. Reprod. Dev., 78: 498–509.10.1002/mrd.21331Search in Google Scholar

Lee S.H., Xu Y.N., Heo Y.T., Cui X.S., Kim N.H. (2013). Effects of trichostatin A and 5-aza-2’deoxycytidine on nuclear reprogramming in pig cloned embryos. Reprod. Dev. Biol., 37: 269–279.10.12749/RDB.2013.37.4.269Search in Google Scholar

Li Z., He X., Chen L., Shi J., Zhou R., Xu W., L iu D., Wu Z. (2013). Bone marrow mesenchymal stem cells are an attractive donor cell type for production of cloned pigs as well as genetically modified cloned pigs by somatic cell nuclear transfer. Cell. Reprogram., 15: 459–470.10.1089/cell.2013.0010Search in Google Scholar

Lin T., Lee J.E., Oqani R.K., Kim S.Y., Cho E.S., Jeong Y.D., Baek J.J., Jin D.I. (2016). Tauroursodeoxycholic acid improves pre-implantation development of porcine SCNT embryo by endoplasmic reticulum stress inhibition. Reprod. Biol., 16: 269–278.10.1016/j.repbio.2016.10.003Search in Google Scholar

Luo Y., Wang Y., Liu J., Lan H., Shao M., Yu Y., Quan F., Zhang Y. (2015). Production of transgenic cattle highly expressing human serum albumin in milk by phiC31 integrase-mediated gene delivery. Transgenic Res., 24: 875–883.10.1007/s11248-015-9898-0Search in Google Scholar

Malemud C.J. (2006). Matrix metalloproteinases (MMPs) in health and disease: an overview. Front Biosci., 11: 1696–1701.10.2741/1915Search in Google Scholar

Mastromonaco G.F., Perrault S.D., Betts D.H., King W.A. (2003). Role of chromosome stability and telomere length in the production of viable cell lines for somatic cell nuclear transfer. BMC Dev. Biol., 6: 41.10.1186/1471-213X-6-41Search in Google Scholar

Meurens F., Summerfield A., Nauwynck H., Saif L., Gerdts V. (2012). The pig: a model for human infectious diseases. Trends Microbiol., 30: 50–57.10.1016/j.tim.2011.11.002Search in Google Scholar

Miyamoto K., Hoshino Y., Minami N., Yamada M., Imai H. (2007). Effects of synchronization of donor cell cycle on embryonic development and DNA synthesis in porcine nuclear transfer embryos. J. Reprod. Dev., 53: 237–246.10.1262/jrd.18085Search in Google Scholar

Nikoletopoulou V., Markaki M., Palikaras K., Tavernarakis N. (2013). Crosstalk between apoptosis, necrosis and autophagy. Biochim. Biophys. Acta, 1833: 3448–3459.10.1016/j.bbamcr.2013.06.001Search in Google Scholar

Olivera R., Moro L.N., Jordan R., Pallarols N., Guglielminetti A., Luzzani C., Miriuka S.G., Vichera G. (2018). Bone marrow mesenchymal stem cells as nuclear donors improve viability and health of cloned horses. Stem Cells Cloning, 11: 13–22.10.2147/SCCAA.S151763Search in Google Scholar

Opiela J., Samiec M., Romanek J. (2017). In vitro development and cytological quality of inter-species (porcine→bovine) cloned embryos are affected by trichostatin A-dependent epigenomic modulation of adult mesenchymal stem cells. Theriogenology, 97: 27–33.10.1016/j.theriogenology.2017.04.022Search in Google Scholar

Page-Mc Caw A., Ewald A.J., Werb Z. (2007). Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Cell Biol., 8: 221–233.10.1038/nrm2125Search in Google Scholar

Pan T., Rawal P., Wu Y., Xie W., Jankovic J., Le W. (2009). Rapamycin protects against rotenone-induced apoptosis through autophagy induction. Neuroscience, 164: 541–551.10.1016/j.neuroscience.2009.08.014Search in Google Scholar

Samiec M. (2004). Development of pig cloning studies: past, present and future. J. Anim. Feed Sci., 13: 211–238.10.22358/jafs/67408/2004Search in Google Scholar

Samiec M. (2005). The effect of mitochondrial genome on architectural remodeling and epigenetic reprogramming of donor cell nuclei in mammalian nuclear transfer-derived embryos. J. Anim. Feed Sci., 14: 393–422.10.22358/jafs/67034/2005Search in Google Scholar

Samiec M., Skrzyszowska M. (2010 a). Preimplantation developmental capability of cloned pig embryos derived from different types of nuclear donor somatic cells. Ann. Anim. Sci., 10: 385–398.Search in Google Scholar

Samiec M., Skrzyszowska M. (2010 b). The use of different methods of oocyte activation for generation of porcine fibroblast cell nuclear-transferred embryos. Ann. Anim. Sci., 10: 399–411.Search in Google Scholar

Samiec M., Skrzyszowska M. (2011 a). Transgenic mammalian species, generated by somatic cell cloning, in biomedicine, biopharmaceutical industry and human nutrition/dietetics – recent achievements. Pol. J. Vet. Sci., 14: 317–328.10.2478/v10181-011-0050-721721422Search in Google Scholar

Samiec M., Skrzyszowska M. (2011 b). The possibilities of practical application of transgenic mammalian species generated by somatic cell cloning in pharmacology, veterinary medicine and xenotransplantology. Pol. J. Vet. Sci., 14: 329–340.10.2478/v10181-011-0051-621721423Search in Google Scholar

Samiec M., Skrzyszowska M. (2012 a). High developmental capability of porcine cloned embryos following trichostatin A-dependent epigenomic transformation during in vitro maturation of oocytes pre-exposed to R-roscovitine. Anim. Sci. Pap. Rep., 30: 383–393.Search in Google Scholar

Samiec M., Skrzyszowska M. (2012 b). Roscovitine is a novel agent that can be used for the activation of porcine oocytes reconstructed with adult cutaneous or fetal fibroblast cell nuclei. Theriogenology, 78: 1855–1867.10.1016/j.theriogenology.2012.06.02922979963Search in Google Scholar

Samiec M., Skrzyszowska M. (2013). Assessment of in vitro developmental capacity of porcine nuclear-transferred embryos reconstituted with cumulus oophorus cells undergoing vital diagnostics for apoptosis detection. Ann. Anim. Sci., 13: 513–529.10.2478/aoas-2013-0035Search in Google Scholar

Samiec M., Skrzyszowska M. (2014). Biological transcomplementary activation as a novel and effective strategy applied to the generation of porcine somatic cell cloned embryos. Reprod. Biol., 14: 128–139.10.1016/j.repbio.2013.12.006Search in Google Scholar

Samiec M., Skrzyszowska M. (2018 a). Intrinsic and extrinsic molecular determinants or modulators for epigenetic remodeling and reprogramming of somatic cell-derived genome in mammalian nuclear-transferred oocytes and resultant embryos. Pol. J. Vet. Sci., 21: 217–227.10.24425/119040Search in Google Scholar

Samiec M., Skrzyszowska M. (2018 b). Can reprogramming of overall epigenetic memory and specific parental genomic imprinting memory within donor cell-inherited nuclear genome be a major hindrance for the somatic cell cloning of mammals? – a review. Ann. Anim. Sci., 18: 623–638.10.2478/aoas-2018-0015Search in Google Scholar

Samiec M., Skrzyszowska M., Lipiński D. (2012). Pseudophysiological transcomplementary activation of reconstructed oocytes as a highly efficient method used for producing nuclear-transferred pig embryos originating from transgenic foetal fibroblast cells. Pol. J. Vet. Sci., 15: 509–516.10.2478/v10181-012-0078-3Search in Google Scholar

Samiec M., Skrzyszowska M., Opiela J. (2013 a). Creation of cloned pig embryos using contact-inhibited or serum-starved fibroblast cells analysed intra vitam for apoptosis occurrence. Ann. Anim. Sci., 13: 275–293.10.2478/aoas-2013-0009Search in Google Scholar

Samiec M., Skrzyszowska M., Bochenek M. (2013 b). In vitro development of porcine nuclear-transferred embryos derived from fibroblast cells analysed cytometrically for apoptosis incidence and accuracy of cell cycle synchronization at the G0/G1 stages. Ann. Anim. Sci., 13: 735–752.10.2478/aoas-2013-0049Search in Google Scholar

Samiec M., Opiela J., Lipiński D., Romanek J. (2015). Trichostatin A-mediated epigenetic transformation of adult bone marrow-derived mesenchymal stem cells biases the in vitro developmental capability, quality, and pluripotency extent of porcine cloned embryos. Biomed. Res. Int., 2015: 814686.10.1155/2015/814686Search in Google Scholar

Sandrin V., Boson B., Salmon P., Gay W., Nègre D., Le Grand R., Trono D., Cos-set F.L. (2002). Lentiviral vectors pseudotyped with a modified RD114 envelope glycoprotein show increased stability in sera and augmented transduction of primary lymphocytes and CD34+ cells derived from human and nonhuman primates. Blood, 100: 823–832.10.1182/blood-2001-11-0042Search in Google Scholar

Schwartz L.M., Smith S.W., Jones M.E., Osborne B.A. (1993). Do all programmed cell deaths occur via apoptosis? Proc. Natl. Acad Sci. USA, 90: 980–984.10.1073/pnas.90.3.980Search in Google Scholar

Shen X., Zhang N., Wang Z., Bai G., Zheng Z., Gu Y., Wu Y., Liu H., Zhou D., Lei L. (2015). Induction of autophagy improves embryo viability in cloned mouse embryos. Sci. Rep., 5: 17829.10.1038/srep17829Search in Google Scholar

Skrzyszowska M., Smorąg Z., Słomski R., Kątska-Książkiewicz L., Kalak R., Michalak E., Wielgus K., Lehmann J., Lipiński D., Szalata M., Pławski A., Samiec M., Jura J., Gajda B., Ryńska B., Pieńkowski M. (2006). Generation of transgenic rabbits by the novel technique of chimeric somatic cell cloning. Biol. Reprod., 74: 1114–1120.10.1095/biolreprod.104.039370Search in Google Scholar

Song B.S., Kim J.S., Yoon S.B., Lee K.S., Koo D.B., Lee D.S., Choo Y.K., Huh J.W., Lee S.R., Kim S.U., Kim S.H., Kim H.M., Chang K.T. (2001). Inactivated Sendai-virusmediated fusion improves early development of cloned bovine embryos by avoiding endoplasmic-reticulum-stress-associated apoptosis. Reprod. Fert. Develop., 23: 826–836.10.1071/RD10194Search in Google Scholar

Song B.S., Yoon S.B., Kim J.S., Sim B.W., Kim Y.H., Cha J.J., Choi S.A., Min H.K., Lee Y., Huh J.W., Lee S.R., Kim S.H., Koo D.B., Choo Y.K., Kim H.M., Kim S.U., Chang K.T. (2012). Induction of autophagy promotes preattachment development of bovine embryos by reducing endoplasmic reticulum stress. Biol. Reprod., 87: 1–11.10.1095/biolreprod.111.097949Search in Google Scholar

Staunstrup N.H., Stenderup K., Mortensen S., Primo M.N., Rosada C., Steini-che T., Liu Y., Li R., Schmidt M., Purup S., Dagnæs-Hansen F., Schrøder L.D., Svensson L., Petersen T.K., Callesen H., Bolund L., Mikkelsen J.G. (2017). Psoriasiform skin disease in transgenic pigs with high-copy ectopic expression of human integrins α2 and β1. Dis. Model. Mech., 10: 869–880.10.1242/dmm.028662Search in Google Scholar

Tanabe Y., Kuwayama H., Wakayama S., Nagatomo H., Ooga M., Kamimura S., Kishigami S., Wakayama T. (2017). Production of cloned mice using oocytes derived from ICR-outbred strain. Reproduction, 154: 859–866.10.1530/REP-17-0372Search in Google Scholar

Tanida I., Ueno T., Kominami E. (2004). LC3 conjugation system in mammalian autophagy. Int. J. Biochem. Cell Biol., 36: 2503–2518.10.1016/j.biocel.2004.05.009Search in Google Scholar

Tsukada M., Ohsumi Y. (1993). Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett., 333: 169–174.10.1016/0014-5793(93)80398-ESearch in Google Scholar

Tsukamoto S. (2014). Autophagic activity as an indicator for selecting good quality embryos. Reprod. Med. Biol., 14: 57–64.10.1007/s12522-014-0197-xSearch in Google Scholar

Tsukamoto S., Yamamoto A. (2013). The role of autophagy in early mammalian embryonic development. J. Mamm. Ova. Res., 30: 86–94.10.1274/jmor.30.86Search in Google Scholar

Vajta G. (2007). Handmade cloning: the future way of nuclear transfer? Trends Biotechnol., 25: 250–253.10.1016/j.tibtech.2007.04.004Search in Google Scholar

Verma G., Arora J.S., Sethi R.S., Mukhopadhyay C.S., Verma R. (2015). Handmade cloning: recent advances, potential and pitfalls. J. Anim. Sci. Biotechnol., 6: 43.10.1186/s40104-015-0043-ySearch in Google Scholar

Wakayama T., Perry A.C., Zuccotti M., Johnson K.R., Yanagimachi R. (1998). Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature, 394: 369–374.10.1038/28615Search in Google Scholar

Wang H., Cui W., Meng C., Zhang J., Li Y., Qian Y., Xing G., Zhao D., Cao S. (2018). MC1568 enhances histone acetylation during oocyte meiosis and improves development of somatic cell nuclear transfer embryos in pig. Cell. Reprogram., 20: 55–65.10.1089/cell.2017.0023Search in Google Scholar

Wang M., Gao Y., Qu P., Qing S., Qiao F., Zhang Y., Mager J., Wang Y. (2017). Sperm-borne miR-449b influences cleavage, epigenetic reprogramming and apoptosis of SCNT embryos in bovine. Sci. Rep., 7: 13403.10.1038/s41598-017-13899-8Search in Google Scholar

Wani N.A., Vettical B.S., Hong S.B. (2017). First cloned Bactrian camel (Camelus bactrianus) calf produced by interspecies somatic cell nuclear transfer: A step towards preserving the critically endangered wild Bactrian camels. PLoS One, 12 (5): e0177800.10.1371/journal.pone.0177800Search in Google Scholar

Wilmut I., Schnieke A.E., Mc Whir J., Kind A.J., Campbell K.H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature, 385: 810–813.10.1038/385810a0Search in Google Scholar

Wongsrikeao P., Nagai T., Agung B., Taniguchi M., Kunishi M., Suto S., Otoi T. (2007). Improvement of transgenic cloning efficiencies by culturing recipient oocytes and donor cells with antioxidant vitamins in cattle. Mol. Reprod. Dev., 74: 694–702.10.1002/mrd.20640Search in Google Scholar

Xu Y.N., Shen X.H., Lee S.E., Kwon J.S., Kim D.J., Heo Y.T., Cui X.S., Kim N.H. (2012). Autophagy influences maternal mRNA degradation and apoptosis in porcine parthenotes developing in vitro. J. Reprod. Dev., 58: 576–584.10.1262/jrd.2012-005Search in Google Scholar

Yu M., Qiu Z.L., Li H., Zeng W.S., Chen L.N., Li Q.H., Quan S. (2011). Association between cell apoptosis and the quality of early mouse embryos. Nan Fang Yi Ke Da Xue Xue Bao, 31: 409–413.Search in Google Scholar

Yue Z., Jin S., Yang C., Levine A.J., Heintz N. (2003). Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc. Natl. Acad. Sci. USA., 100: 15077–15082.10.1073/pnas.2436255100Search in Google Scholar

Zakhartchenko V., Mueller S., Alberio R., Schernthaner W., Stojkovic M., We-nigerkind H., Wanke R., Lassnig C., Mueller M., Wolf E., Brem G. (2001). Nuclear transfer in cattle with non-transfected and transfected fetal or cloned transgenic fetal and postnatal fibroblasts. Mol. Reprod. Dev., 60: 362–369.10.1002/mrd.1098Search in Google Scholar

Zhang L., Huang Y., Wu Y., Si J., Huang Y., Jiang Q., Lan G., Guo Y., Jiang H. (2017). Scriptaid upregulates expression of development-related genes, inhibits apoptosis, and improves the development of somatic cell nuclear transfer mini-pig embryos. Cell. Reprogram., 19: 19–26.10.1089/cell.2016.0033Search in Google Scholar

Zhang P., Liu P., Dou H., Chen L., Chen L., Lin L., Tan P., Vajta G., Gao J., Du Y., Ma R.Z. (2013). Handmade cloned transgenic sheep rich in omega-3 fatty acids. PLoS One, 8 (2): e55941.10.1371/journal.pone.0055941Search in Google Scholar

Zhang Y., Qu P., Ma X., Qiao F., Ma Y., Qing S., Zhang Y., Wang Y., Cui W. (2018). Tauroursodeoxycholic acid (TUDCA) alleviates endoplasmic reticulum stress of nuclear donor cells under serum starvation. PLoS One, 13 (5): e0196785.10.1371/journal.pone.0196785Search in Google Scholar

eISSN:
2300-8733
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine