Accesso libero

Neurosteroids in Cognitive Disorder - From Well-Known Pharmacological Aspects to a Source of Controversy

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Baulieu EE, Robel P. Neurosteroids. A new brain function? J. Steoid Biochem. Mol. Biol. 1990; 37(3):S395-403.10.1016/0960-0760(90)90490-C Search in Google Scholar

2. Corpéchot C, Synguelakis M, Talha S, Axelson M, Sjövall J, Vihko R et al. Pregnenolone and its sulfate ester in the rat brain. Brain Res. 1983; 270(1):S119-25.10.1016/0006-8993(83)90797-7 Search in Google Scholar

3. Corpéchot C, Robel P, Axelson M, Sjövall J, Baulieu EE. Characterization and measurement of dehydroepiandrosterone sulfate in rat brain. Proc. Natn. Acad. Sci U.S.A. 1981;78(8):S4704-7.10.1073/pnas.78.8.4704 Search in Google Scholar

4. Selye H. Anesthetic Effect of Steroid Hormones. Proc Soc Exp Biol Med. 1941; 46(1):S116–21.10.3181/00379727-46-11907 Search in Google Scholar

5. Harrison NL, Simmonds MA. Modulation of the GABA receptor complex by a steroid anaesthetic. Brain Res. 1984;232(2):S 287-92.10.1016/0006-8993(84)90299-3 Search in Google Scholar

6. Harrison NL, Vicini S, Barker JL. A steroid anesthetic prolongs inhibitory postsynaptic currents in cultured rat hippocampal neurons. J neurosci. 1987;7(2):S604-9.10.1523/JNEUROSCI.07-02-00604.1987 Search in Google Scholar

7. Joksimovic SL, Covey Douglas F, Jevtovic-Todorovic V, Todorovic Slobodan M. Neurosteroids in Pain Management: A New Perspective on an Old Player. Front Pharmacol. 2018;9:S1127.10.3389/fphar.2018.01127617605130333753 Search in Google Scholar

8. Herzog AG. Intermittent progesterone therapy and frequency of complex partial seizures in women with menstrual disorders. Neurology. 1986;36(12):S1607.10.1212/WNL.36.12.1607 Search in Google Scholar

9. Herzog AG. Progesterone therapy in women with complex partial and secondary generalized seizures. Neurology. 1995;45(9):S1660-2.10.1212/WNL.45.9.1660 Search in Google Scholar

10. Joshi S, Kapur J. Neurosteroid regulation of GABA-A receptors: A role in catamenial epilepsy. Brain Res. 2019;1703:S31-40.10.1016/j.brainres.2018.02.031610744629481795 Search in Google Scholar

11. Monaghan EP, McAuley JW, Data JL. Ganaxolone: a novel positive allosteric modulator of the GABA(A) receptor complex for the treatment of epilepsy. Expert Opin Investig Drugs. 1999;8:S1663-71.10.1517/13543784.8.10.1663 Search in Google Scholar

12. Reddy DS, Rogawski MA. Ganaxolone suppression of behavioral and electrographic seizures in the mouse amygdala kindling model. Epilepsy Res. 2010;89(2-3):S254-260.10.1016/j.eplepsyres.2010.01.009 Search in Google Scholar

13. Uzunov DP, Cooper BT, Costa E, Guidotti A. Fluoxetine-elicited changes in brain neurosteroid content measured by negative ion mass fragmentography. Proc Natl Acad Sci USA. 1996;93(22):S12599-604.10.1073/pnas.93.22.12599 Search in Google Scholar

14. Khisti RT, Chopde CT. Serotonergic agents modulate antidepressant-like effect of the neurosteroid 3α-hydroxy-5α-pregnan-20-one in mice. Brain Res. 2000;865(2):291-300. Search in Google Scholar

15. Eser D, Baghai TC, Schule C, Nothdurfter C, Rupprecht R. Neuroactive Steroids as Endogenous Modulators of Anxiety. Curr. Pharm. Des. 2008; 14(33):S3525-33.10.2174/138161208786848838 Search in Google Scholar

16. Ičíková M, Dibbelt L, Hiill M, Hampl R, Stárka L. Allopregnenolone in women with premenstrual syndrom. Horm. Metab. Res. 1998;30(4):S227 – 9.10.1055/s-2007-978871 Search in Google Scholar

17. Ratner MH, Kumaresan V, Farb DH. Neurosteroid Actions in Memory and Neurologic/Neuropsychiatric Disorders. Front Endocrinol. 2019;10:S169.10.3389/fendo.2019.00169 Search in Google Scholar

18. Rahmani B, Ghasemi R, Dargahi L, Ahmadiani A, Haeri A. Neurosteroids: potential underpinning roles in maintaining homeostasis. Gen Comp Endocrinol. 2016; 225:S242-50.10.1016/j.ygcen.2015.09.030 Search in Google Scholar

19. Melcangi RC, Giatti S, Pesaresi M, Carabrese D, Mitro N, Caruso D et al. Role of Neuroactive Steroids in the Peripheral Nervous System. Front Endocrinol. 2011;2:S104.10.3389/fendo.2011.00104 Search in Google Scholar

20. Melcangi RC, Garcia-Segura LM, Mensah-Nyagan, AG. Neuroactive steroids: State of the art and new perspectives. Cell. Mol. Life Sci. 2008;65(5):S777-97.10.1007/s00018-007-7403-5 Search in Google Scholar

21. Mellon SH, Griffin LD. Neurosteroids: biochemistry and clinical significance. Trends Endocrinol. Metab. 2002;13(1): S35-43.10.1016/S1043-2760(01)00503-3 Search in Google Scholar

22. Baulieu EE, Robel P, Schumacher M. Neurosteroids: Beginning of the story. Int. Rev. Neurobiol. 2001;46:S1-32.10.1016/S0074-7742(01)46057-0 Search in Google Scholar

23. Liu J, Rone MB, Papadopoulos V. Protein-Protein Interactions Mediate Mitochondrial Cholesterol Transport and Steroid Biosynthesis. J Biol Chem. 2006;281(50):S38879-93.10.1074/jbc.M60882020017050526 Search in Google Scholar

24. Caleb BK, Billheimer TJ, Summers SA, Stayrook SE, Lewis M, Strauss FJ. Steroidogenic Acute Regulatory Protein (StAR) Is A Sterol Transfer Protein. J Biol Chem. 1989;273(41):S26285-88.10.1074/jbc.273.41.262859756854 Search in Google Scholar

25. Bose M, Whittal RM, Miller WL, Bose HS. Steroidogenic Activity of StAR Requires Contact with Mitochondrial VDAC1 and Phosphate Carrier Protein, J Biol Chem. 2008;283(14):S8837-45.10.1074/jbc.M709221200227637518250166 Search in Google Scholar

26. Selvaraj V, Stocco DM. The changing landscape in translocator protein (TSPO) function. Trends Endocrinol. Metab. 2015;26(7):S341-8.10.1016/j.tem.2015.02.007717165225801473 Search in Google Scholar

27. Selvaraj V, Stocco DM, Tu LN. Minireview: Translocator Protein (TSPO) and Steroidogenesis: A Reappraisal. Mol. Cell. Endocrinol. 2015; 29(4):S490-501.10.1210/me.2015-1033439928025730708 Search in Google Scholar

28. Papadopoulos V, Lecanu L, Brown RC, Han Z, Yao ZX. Peripheral-type benzodiazepine receptor in neurosteroid biosynthesis, neuropathology and neurological disorders. Neuroscience. 2006; 138(3):S749-56.10.1016/j.neuroscience.2005.05.06316338086 Search in Google Scholar

29. Reddy DS. Neurosteroids: endogenous role in the human brain and therapeutic potentials. Prog Brain Res. 2010;186:S113-37.10.1016/B978-0-444-53630-3.00008-7313902921094889 Search in Google Scholar

30. Chung BC, Matteson KJ, Voutilainen R, Mohandas TK, Miller WL. Human cholesterol side-chain cleavage enzyme, P450scc: cDNA cloning, assignment of the gene to chromosome 15, and expression in the placenta. Proc Natl Acad Sci U S A. 1986;83(23):S8962-66.10.1073/pnas.83.23.89623870543024157 Search in Google Scholar

31. Yasushi H, Suguru M. Neurosteroids in Adult Hippocampus of Male and Female Rodents: Biosynthesis and Actions of Sex Steroids. Front Endocrinol. 2018;9:S183.10.3389/fendo.2018.00183592596229740398 Search in Google Scholar

32. Agís-Balboa RC, Pinna G, Zhubi A, Maloku E, Veldic M, Costa E et al. Characterization of brain neurons that express enzymes mediating neurosteroid biosynthesis. Proc Natl Acad Sci USA. 2006;103(39):S14602-7.10.1073/pnas.0606544103 Search in Google Scholar

33. Mueller JW, Gilligan LC, Idkowiak J, Arlt W, Foster PA. The Regulation of Steroid Action by Sulfation and Desulfation. Endocr Rev. 2015;36(5):S526-63.10.1210/er.2015-1036 Search in Google Scholar

34. Hobkirk R. Steroid sulfation. Trends Endocrinol. Metab. 1993; 4(2):S 69-74.10.1016/S1043-2760(05)80018-9 Search in Google Scholar

35. Do Rego JL, Seong JY, Burel D et al. Regulation of neurosteroid biosynthesis by neurotransmitters and neuropeptides. Front Endocrinol (Lausanne). 2012; 3:S4.10.3389/fendo.2012.00004 Search in Google Scholar

36. Compagnone NA, Mellon SH. Neurosteroids: biosynthesis and function of these novel neuromodulators. Front. Neuroendocrinol. 2000;21(1):S1-56.10.1006/frne.1999.0188 Search in Google Scholar

37. Rupprecht R, Reul JM, Trapp T et al. Progesterone receptor-mediated effects of neuroactive steroids. Neuron. 1993;11(3):S523-30.10.1016/0896-6273(93)90156-L Search in Google Scholar

38. Joëls M. Steroid Hormones and Excitability in the Mammalian Brain. Front. Neuroendocrinol. 1997;18(1):2-48. Search in Google Scholar

39. Reddy DS, Apanites LA. Anesthetic effects of progesterone are undiminished in progesterone receptor knockout mice. Brain Res. 2005;1033(1):S96-101.10.1016/j.brainres.2004.11.02615680344 Search in Google Scholar

40. Reddy DS, Castaneda DC, O’Malley BW, Rogawski MA. Anticonvulsant Activity of Progesterone and Neurosteroids in Progesterone Receptor Knockout Mice. J Pharmacol Exp Ther. 2004;310(1):S230-9.10.1124/jpet.104.06526814982969 Search in Google Scholar

41. Majewska MD, Harrison NL, Schwartz RD, Barker JL, Paul SM. Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science. 1986;232(4753):S1004-7.10.1126/science.24227582422758 Search in Google Scholar

42. Lambert JJ, Belelli D, Hill-Venning C. et al. Neurosteroid modulation of native and recombinant GABA-A receptors. Cell Mol Neurobiol. 1996;16(2):S155-74.10.1007/BF020881748743967 Search in Google Scholar

43. Wu FS, Gibbs TT, Farb DH. Pregnenolone sulfate: a positive allosteric modulator at the N-methyl-D-aspartate receptor. Mol Pharmacol.1991;40(3):S333-6. Search in Google Scholar

44. Sieghart W. Structure, pharmacology and function of GABAA receptor subtypes. Adv. Pharmacol. 2006;54:S231-63.10.1016/S1054-3589(06)54010-4 Search in Google Scholar

45. Porcu P, Barron AM, Frye CA, Walf AA, Yang SY, He XY. Neurosteroidogenesis Today: Novel Targets for Neuroactive Steroid Synthesis and Action and Their Relevance for Translational Research. J Neuroendocrinol. 2016;28(2):S1-19.10.1111/jne.12351 Search in Google Scholar

46. Nakamura Y, Darnieder LM, Deeb TZ et al. Regulation of GABAA Rs by Phosphorylation. Adv Pharmacol. 2015;72:S97-146.10.1016/bs.apha.2014.11.008 Search in Google Scholar

47. Majewska MD. Neurosteroids: Endogenous bimodal modulators of the GABAA receptor mechanism of action and physiological significance. Prog. Neurobiol. 1992;38(4):S379-94.10.1016/0301-0082(92)90025-A Search in Google Scholar

48. Reddy DS. Pharmacology of endogenous neuroactive steroids, Crit Rev Neurobiol. 2003;15:S197-234.10.1615/CritRevNeurobiol.v15.i34.20 Search in Google Scholar

49. Morrow AL. Recent developments in the significance and therapeutic relevance of neuroactive steroids - Introduction to the special issue. Pharmacol Ther. 2007;116(1):S1-6.10.1016/j.pharmthera.2007.04.003204781617531324 Search in Google Scholar

50. Hénin J, Salari R, Murlidaran S et al. A predicted binding site for cholesterol on the GABAA receptor. Biophys. J. 2014;106(9):S1938-49.10.1016/j.bpj.2014.03.024401728524806926 Search in Google Scholar

51. Paul SM, Doherty JJ, Robichaud AJ et al. The Major Brain Cholesterol Metabolite 24(S)-Hydroxycholesterol Is a Potent Allosteric Modulator of N-Methyl-D-Aspartate Receptors. J Neurosci. 2013; 33(44):S17290–300.10.1523/JNEUROSCI.2619-13.2013381250224174662 Search in Google Scholar

52. Li F, Tsien JZ. Memory and the NMDA receptors. N Engl J Med. 2009; 361(3):S302-3.10.1056/NEJMcibr0902052370375819605837 Search in Google Scholar

53. Schumacher M, Robel P. Baulieu EE. Development and regeneration of the nervous system: a role for neurosteroids. Dev Neurosci. 1996;18(1-2):S 6-21.10.1159/000315793 Search in Google Scholar

54. Lambert JJ, Cooper MA, Simmons RDJ, Weir CJ, Belelli D. Neurosteroids: Endogenous allosteric modulators of GABAA receptors. Psychoneuroendocrinology. 2009;34(1):S48-58.10.1016/j.psyneuen.2009.08.009 Search in Google Scholar

55. Mayo W, Dellu F, Robel P, Cherkaoui J, Le Moal M, Baulieu EE et al. Infusion of neurosteroids into the nucleus basalis magnocellularis affects cognitive processes in the rat. Brain Res. 1993;607(1-2):S324-8.10.1016/0006-8993(93)91524-V Search in Google Scholar

56. Wang JM, Singh C, Liu L, Irwin RW, Chen S, Chung EJ et al. Allopregnanolone reverses neurogenic and cognitive deficits in mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. U.S.A. 2010;107(24):S11145.10.1073/pnas.1006236107 Search in Google Scholar

57. Bengtsson SK, Johansson M, Bäckström T, Wang M. Chronic allopregnanolone treatment accelerates Alzheimer’s disease development in βPP(Swe)PSEN1(ΔE9) mice. J Alzheimers Dis. 2012;31(1):S71-84.10.3233/JAD-2012-120268 Search in Google Scholar

58. Bengtsson SK, Johansson M, Bäckström T, Nitsch RM, Wang M. Brief but Chronic Increase in Allopregnanolone Cause Accelerated AD Pathology Differently in Two Mouse Models. Curr Alzheimer Res. 2013;10(1):S38-47.10.2174/156720513804871363 Search in Google Scholar

59. Ladurelle N, Eychenne B, Denton D, Blair-West J, Schumacher M, Robel P et al. Prolonged intracerebroventricular infusion of neurosteroids affects cognitive performances in the mouse. Brain Res. 2000;858(2):S371-9.10.1016/S0006-8993(00)01953-3 Search in Google Scholar

60. Darnaudéry M, Koehl M, Piazza PV, Le Moal M, Mayo W. Pregnenolone sulfate increases hippocampal acetylcholine release and spatial recognition. Brain Res. 2000;852(1):S173-9.10.1016/S0006-8993(99)01964-2 Search in Google Scholar

61. Hillen T, Lun A, Reischies FM, Borchelt M, Steinhagen-Thiessen E, Schaub RT. DHEA-S plasma levels and incidence of Alzheimer’s disease. Biol. Psychiatry. 2000;47(2):S161-3.10.1016/S0006-3223(99)00217-6 Search in Google Scholar

62. Maurice T, Su TP. Privat A. Sigma1 (sigma 1) receptor agonists and neurosteroids attenuate B25-35-amyloid peptide-induced amnesia in mice through a common mechanism. Neuroscience. 1998;83(2):S413-28.10.1016/S0306-4522(97)00405-3 Search in Google Scholar

63. Riedel G, Davies SN. Cannabinoid Function in Learning, Memory and Plasticity. Cannabinoids. Handb Exp Pharmacol. 2005;168:S445-77.10.1007/3-540-26573-2_1516596784 Search in Google Scholar

64. Wang W, Jia Y, Pham DT, Palmer LC, Jung KM, Cox CD et al. Atypical Endocannabinoid Signaling Initiates a New Form of Memory-Related Plasticity at a Cortical Input to Hippocampus. Cereb Cortex. 2018;28(7):S2253-66.10.1093/cercor/bhx126 Search in Google Scholar

65. Gaspar PA, Bustamante ML, Silva H, Aboitiz F. Molecular mechanisms underlying glutamatergic dysfunction in schizophrenia: therapeutic implications. J Neurochem. 2009;111(4):S891-900.10.1111/j.1471-4159.2009.06325.x Search in Google Scholar

66. Labrie V, Roder JC. The involvement of the NMDA receptor D-serine/glycine site in the pathophysiology and treatment of schizophrenia. Neurosci Biobehav Rev. 2010;34(3):S351-72.10.1016/j.neubiorev.2009.08.002 Search in Google Scholar

67. Marx CE, Keefe RS, Buchanan RW et al. Proof-of-concept trial with the neurosteroid pregnenolone targeting cognitive and negative symptoms in schizophrenia. Neuropsychopharmacology. 2009;34(8):S1885-903.10.1038/npp.2009.26 Search in Google Scholar

68. Riordan AJ, Schaler AW, Fried J, Paine TA, Thornton JE. Estradiol and luteinizing hormone regulate recognition memory following subchronic phencyclidine: Evidence for hippocampal GABA action. Psychoneuroendocrinology. 2018; 91:S86-9410.1016/j.psyneuen.2018.02.024 Search in Google Scholar

69. Li PK, Rhodes ME, Burke AM et al. Memory enhancement mediated by the steroid sulfatase inhibitor (p-O-sulfamoyl)-N-tetradecanoyl tyramine. Life Sci. 1997;60(3):S 45-51.10.1016/S0024-3205(96)00621-2 Search in Google Scholar

70. Wang C, Marx CE, Morrow AL, Wilson WA, Moore SD. Neurosteroid modulation of GABAergic neurotransmission in the central amygdala: a role for NMDA receptors. Neurosci Lett. 2007;415(2):S118-23.10.1016/j.neulet.2007.01.004189263117275189 Search in Google Scholar

71. Ströhle A, Romeo E, Michele F et al. Induced panic attacks shift gamma-aminobutyric acid type A receptor modulatory neuroactive steroid composition in patients with panic disorder: preliminary results. Arch Gen Psychiatry. 2003;60(2):S161-8.10.1001/archpsyc.60.2.16112578433 Search in Google Scholar

eISSN:
2285-7079
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Medicine, Assistive Professions, Nursing, Basic Medical Science, other, Clinical Medicine