1. bookAHEAD OF PRINT
Dettagli della rivista
License
Formato
Rivista
eISSN
2444-8656
Prima pubblicazione
01 Jan 2016
Frequenza di pubblicazione
2 volte all'anno
Lingue
Inglese
Accesso libero

Application of digital design technology in the design of intelligent agricultural machinery and equipment

Pubblicato online: 03 Jun 2023
Volume & Edizione: AHEAD OF PRINT
Pagine: -
Ricevuto: 04 May 2022
Accettato: 26 Oct 2022
Dettagli della rivista
License
Formato
Rivista
eISSN
2444-8656
Prima pubblicazione
01 Jan 2016
Frequenza di pubblicazione
2 volte all'anno
Lingue
Inglese

Abdel-Hamid, O., Mohamed, A. R., Jiang, H., et al. (2014). Convolutional neural networks for speech recognition. IEEE/ACM Transactions on audio, speech, and language processing, 22(10), 1533-1545. Search in Google Scholar

Abdel-Hamid, O., Deng, L., Yu, D. (2013, August). Exploring convolutional neural network structures and optimization techniques for speech recognition. In Interspeech (Vol. 2013, pp. 1173-5). Search in Google Scholar

Goldberg, Y. (2016). A primer on neural network models for natural language processing. Journal of Artificial Intelligence Research, 57, 345-420. Search in Google Scholar

Goldberg, Y. (2017). Neural network methods for natural language processing. Synthesis lectures on human language technologies, 10(1), 1-309. Search in Google Scholar

Min, S., Lee, B., Yoon, S. (2017). Deep learning in bioinformatics. Briefings in bioinformatics, 18(5), 851-869. Search in Google Scholar

Selvaraju, R. R., Cogswell, M., Das, A., et al. (2017). Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE international conference on computer vision (pp. 618-626). Search in Google Scholar

Sun, X., Wu, P., Hoi, S. C. (2018). Face detection using deep learning: An improved faster RCNN approach. Neurocomputing, 299, 42-50. Search in Google Scholar

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779-788). Search in Google Scholar

Redmon, J., Farhadi, A. (2017). YOLO9000: better, faster, stronger. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7263-7271). Search in Google Scholar

Chen, Y., Puttitanun, T. (2005). Intellectual property rights and innovation in developing countries. Journal of development economics, 78(2), 474-493. Search in Google Scholar

Bochkovskiy, A., Wang, C. Y., Liao, H. Y. M. (2020). Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934. Search in Google Scholar

Park, C., & Black, R. A. (1995). Simple time-variant, band-pass filtering by operator scaling. Geophysics, 60(5), 1527-1535. Search in Google Scholar

Van, M., Franciosa, P., Ceglarek, D. (2016). Rolling element bearing fault diagnosis using integrated nonlocal means denoising with modified morphology filter operators. Mathematical Problems in Engineering, 2016. Search in Google Scholar

Chen, H., Fan, D. L., Fang, L., et al. (2020). Particle swarm optimization algorithm with mutation operator for particle filter noise reduction in mechanical fault diagnosis. International journal of pattern recognition and artificial intelligence, 34(10), 2058012. Search in Google Scholar

Braik, M., Sheta, A. F., Ayesh, A. (2007). Image Enhancement Using Particle Swarm Optimization. In World congress on engineering (Vol. 1, pp. 978-988). Search in Google Scholar

Tyagi, S., & Amhia, H. (2013). Image enhancement and analysis of thermal images using various techniques of image processing. Int. J. Eng. Res. Appl, 3(2), 579-584. Search in Google Scholar

Saradhadevi, V., Sundaram, D. V. (2010). A survey on digital image enhancement techniques. IJCSIS) International Journal of Computer Science and Information Security, 8(8). Search in Google Scholar

Zhu, Z., Xie, D., Li, W., et al. (2015). Abnormal eggs detection based on spectroscopy technology and multiple classifier fusion. Transactions of the Chinese Society of Agricultural Engineering, 31(2), 312-318. Search in Google Scholar

Emadi, M., Rahgozar, M. (2020). Twitter sentiment analysis using fuzzy integral classifier fusion. Journal of Information Science, 46(2), 226-242. Search in Google Scholar

Singha, J., Laskar, R. H. (2017). Hand gesture recognition using two-level speed normalization, feature selection and classifier fusion. Multimedia Systems, 23(4), 499-514. Search in Google Scholar

Sannen, D., Lughofer, E., Van Brussel, H. (2010). Towards incremental classifier fusion. Intelligent Data Analysis, 14(1), 3-30. Search in Google Scholar

Thuderoz, F., Simonet, M. A., Hansen, O., et al. (2010). Numerical modelling of the VJ combinations of the T cell receptor TRA/TRD locus. PLoS Computational Biology, 6(2), e1000682. Search in Google Scholar

Mahdavi, S. H., Shojaee, S. (2013). Optimum time history analysis of SDOF structures using free scale of Haar wavelet. Structural Engineering and Mechanics, An Int’l Journal, 45(1), 95-110. Search in Google Scholar

Alqahtani, A., Xie, X., Jones, M. W., Essa, E. (2021). Pruning CNN filters via quantifying the importance of deep visual representations. Computer Vision and Image Understanding, 208, 103220. Search in Google Scholar

Ahmmed, R., Rahman, M. A., Hossain, M. F. (2018). An advanced algorithm combining SVM and ANN classifiers to categorize tumors with position from brain MRI images. Advances in Science, Technology and Engineering Systems Journal, 3(2), 40-48. Search in Google Scholar

Articoli consigliati da Trend MD