1. bookVolume 8 (2023): Edizione 1 (January 2023)
Dettagli della rivista
License
Formato
Rivista
eISSN
2444-8656
Prima pubblicazione
01 Jan 2016
Frequenza di pubblicazione
2 volte all'anno
Lingue
Inglese
Accesso libero

Mechanics of Building Structural Materials Based on Lagrangian Mathematical Model Analysis

Pubblicato online: 15 Jul 2022
Volume & Edizione: Volume 8 (2023) - Edizione 1 (January 2023)
Pagine: 1067 - 1076
Ricevuto: 28 Feb 2022
Accettato: 26 Apr 2022
Dettagli della rivista
License
Formato
Rivista
eISSN
2444-8656
Prima pubblicazione
01 Jan 2016
Frequenza di pubblicazione
2 volte all'anno
Lingue
Inglese

Figure 1

API specification soft clay p-y curve
API specification soft clay p-y curve

Figure 2

Deflection of a horizontally loaded pile
Deflection of a horizontally loaded pile

Figure 3

Calculated and measured results of pile foundation static load test
Calculated and measured results of pile foundation static load test

Figure 4

Load height-deformation curves of two pile foundations
Load height-deformation curves of two pile foundations

Figure 5

Deformation calculation at the limit state of normal service
Deformation calculation at the limit state of normal service

Figure 6

Deformation calculation under the load-carrying capacity condition
Deformation calculation under the load-carrying capacity condition

Todd, P. A System for Automated Deduction in Engineering Mechanics. Mathematics in Computer Science.,2020; 14(4):775-790 Search in Google Scholar

Fortunato, A., Gesualdo, A., Mascolo, I., & Monaco, M. P-Bézier energy optimisation for elastic solutions of masonry-like panels. International Journal of Masonry Research and Innovation.,2022; 7(1-2):113-125 Search in Google Scholar

Bohren, C. F. Student’s Guide to Analytical Mechanics. American Journal of Physics.,2019; 87(9):766-767 Search in Google Scholar

Acuna, A., Sofronici, S. H., Goergen, C. J., & Calve, S. In situ measurement of native extracellular matrix strain. Experimental mechanics.,2019; 59(9):1307-1321 Search in Google Scholar

Gholami, O., & Tourajizadeh, H. Modeling and Control of a 3PRS Robot Using Lagrange Method. Journal of Solid and Fluid Mechanics.,2019; 9(3):25-38 Search in Google Scholar

He, J. H. Variational principle for the generalized KdV-burgers equation with fractal derivatives for shallow water waves. Journal of Applied and Computational Mechanics., 2020;6(4):735-740 Search in Google Scholar

Sanz-Herrera, J. A., Mora-Macías, J., Ayensa-Jiménez, J., Reina-Romo, E., Doweidar, M. H., Domínguez, J., & Doblaré, M. Data-Driven Computational Simulation in Bone Mechanics. Annals of Biomedical Engineering.,2021; 49(1):407-419 Search in Google Scholar

He, J. H., Anjum, N., & Skrzypacz, P. S. A Variational Principle for a Nonlinear Oscillator Arising in the Microelectromechanical System. Journal of Applied and Computational Mechanics.,2021; 7(1):78-83 Search in Google Scholar

Hasaballa, A. I., Wang, V. Y., Sands, G. B., Wilson, A. J., Young, A. A., LeGrice, I. J., & Nash, M. P. Microstructurally motivated constitutive modeling of heart failure mechanics. Biophysical journal.,2019; 117(12):2273-2286 Search in Google Scholar

Vanli, A., Ünal, I. & Özdemir, D. Normal complex contact metric manifolds admitting a semi symmetric metric connection. Applied Mathematics and Nonlinear Sciences.,2020; 5(2): 49-66 Search in Google Scholar

Rajesh Kanna, M., Pradeep Kumar, R., Nandappa, S. & Cangul, I. On Solutions of Fractional order Telegraph Partial Differential Equation by Crank-Nicholson Finite Difference Method. Applied Mathematics and Nonlinear Sciences.,2020;5(2): 85-98 Search in Google Scholar

Articoli consigliati da Trend MD