1. bookVolume 8 (2023): Edizione 1 (January 2023)
Dettagli della rivista
License
Formato
Rivista
eISSN
2444-8656
Prima pubblicazione
01 Jan 2016
Frequenza di pubblicazione
2 volte all'anno
Lingue
Inglese
Accesso libero

Mathematical Modeling Thoughts and Methods Based on Fractional Differential Equations in Teaching

Pubblicato online: 11 Jun 2023
Volume & Edizione: Volume 8 (2023) - Edizione 1 (January 2023)
Pagine: 299 - 308
Ricevuto: 22 Jan 2022
Accettato: 18 Mar 2022
Dettagli della rivista
License
Formato
Rivista
eISSN
2444-8656
Prima pubblicazione
01 Jan 2016
Frequenza di pubblicazione
2 volte all'anno
Lingue
Inglese

Figure 1

Comparison of M-L function and its inverse function with exponential (log) function
Comparison of M-L function and its inverse function with exponential (log) function

Figure 2

The behavior of very slow diffusion and Sinai logarithmic diffusion in a short period
The behavior of very slow diffusion and Sinai logarithmic diffusion in a short period

Figure 3

Long-term behavior of very slow diffusion and Sinai logarithmic diffusion
Long-term behavior of very slow diffusion and Sinai logarithmic diffusion

Mohammed, P. O. Hermite-Hadamard inequalities for Riemann-Liouville fractional integrals of a convex function with respect to a monotone function. Mathematical Methods in the Applied Sciences.,2021; 44(3): 2314-2324 Search in Google Scholar

Farid, G. Some Riemann–Liouville fractional integral inequalities for convex functions. The Journal of Analysis.,2019; 27(4): 1095-1102 Search in Google Scholar

Farid, G.Estimations of Riemann–Liouville k-fractional integrals via convex functions. Acta et Commentationes Universitatis Tartuensis de Mathematica.,2019; 23(1): 71-78 Search in Google Scholar

Rashid, S., Noor, M. A., & Noor, K. I. Some generalize Riemann-Liouville fractional estimates involving functions having exponentially convexity property. J. Math.,2019; 51(11): 01-15 Search in Google Scholar

Tuan, N. H., Zhou, Y., & Can, N. H. Identifying inverse source for fractional diffusion equation with Riemann–Liouville derivative. Computational and Applied Mathematics., 2020;39(2): 1-16 Search in Google Scholar

Rahaman, H., Kamrul Hasan, M., Ali, A. & Shamsul Alam, M. Implicit Methods for Numerical Solution of Singular Initial Value Problems. Applied Mathematics and Nonlinear Sciences.,2021; 6(1): 1-8 Search in Google Scholar

El-Borhamy, M. & Mosalam, N. On the existence of periodic solution and the transition to chaos of Rayleigh-Duffing equation with application of gyro dynamic. Applied Mathematics and Nonlinear Sciences.,2020; 5(1): 93-108 Search in Google Scholar

Mohammed, P. O. A generalized uncertain fractional forward difference equations of Riemann–Liouville type. J. Math. Res.,2019; 11(4): 43-50 Search in Google Scholar

Gu, Y., Wang, H., & Yu, Y. Synchronization for commensurate Riemann-Liouville fractional-order memristor-based neural networks with unknown parameters. Journal of the Franklin Institute.,2020; 357(13): 8870-8898 Search in Google Scholar

Zhou, Y., & Na Wang, J. The nonlinear Rayleigh-Stokes problem with Riemann-Liouville fractional derivative. Mathematical Methods in the Applied Sciences.,2021; 44(3): 2431-2438 Search in Google Scholar

Farid, G. Bounds of Riemann-Liouville fractional integral operators. Computational Methods for Differential Equations.,2021; 9(2): 637-648 Search in Google Scholar

Articoli consigliati da Trend MD