Accesso libero

Nonlinear Mathematical Modelling of Bone Damage and Remodelling Behaviour in Human Femur

INFORMAZIONI SU QUESTO ARTICOLO

Cita

DiGirolamo, D.J., T.L. Clemens, and S. Kousteni, The skeleton as an endocrine organ. Nature Reviews Rheumatology, 2012. 8 (11): 674–683. DiGirolamoD.J. ClemensT.L. KousteniS. The skeleton as an endocrine organ Nature Reviews Rheumatology 2012 8 11 674 683 10.1038/nrrheum.2012.157 Search in Google Scholar

Marsell, R. and T.A. Einhorn, The biology of fracture healing. Injury, 2011. 42 (6): 551–555. MarsellR. EinhornT.A. The biology of fracture healing Injury 2011 42 6 551 555 10.1016/j.injury.2011.03.031 Search in Google Scholar

Dimitriou, R., et al., Bone regeneration: current concepts and future directions. BMC medicine, 2011. 9 (1): 1. DimitriouR. Bone regeneration: current concepts and future directions BMC medicine 2011 9 1 1 10.1186/1741-7015-9-66 Search in Google Scholar

D. Taylor, JG Hazenberg, et al. Living with cracks: Damage and repair in human bone. Nature Materials, 2007. 6 (4): 263–268. R. Huiskes, R. Ruimerman, et al. Nature, 405 (6787): 704 (2000) TaylorD. HazenbergJG Living with cracks: Damage and repair in human bone Nature Materials 2007 6 4 263 268 R. Huiskes, R. Ruimerman, et al. Nature, 405 (6787): 704 (2000) 10.1038/nmat1866 Search in Google Scholar

Carter D R, Hayes W C, Schurman D J. Fatigue life of compact bone—II. Effects of microstructure and density. Journal of Biomechanics, 1976, 9 (4): 211–218. CarterD R HayesW C SchurmanD J Fatigue life of compact bone—II. Effects of microstructure and density Journal of Biomechanics 1976 9 4 211 218 10.1016/0021-9290(76)90006-3 Search in Google Scholar

Hazenberg J G, Hentunen T A, Heino T J, et al. Microdamage detection and repair in bone: Fracture mechanics, histology, cell biology. Technology & Health Care, 2009, 17 (1): 67–75. HazenbergJ G HentunenT A HeinoT J Microdamage detection and repair in bone: Fracture mechanics, histology, cell biology Technology & Health Care 2009 17 1 67 75 10.3233/THC-2009-053619478407 Search in Google Scholar

T C Lee, A Staines, D Taylor. Lee, T. C. Staines, A. & Taylor, D. Bone adaptation to load: Microdamage as a stimulus for bone remodelling. J. Anat. 201, 437–446[J]. journal of anatomy, 2003, 201 (6): 437–446. LeeT C StainesA TaylorD LeeC. StainesA. TaylorD. Bone adaptation to load: Microdamage as a stimulus for bone remodelling J. Anat. 201 437 446 [J]. journal of anatomy, 2003, 201 (6): 437–446. 10.1046/j.1469-7580.2002.00123.x157098712489756 Search in Google Scholar

Martin RB, Burr DB, Schaffler MB. Effects of age and sex on the amount and distribution of mineral in Eskimo tibiae. american journal of physical anthropology, 2010, 67 (4): 371–380. MartinRB BurrDB SchafflerMB Effects of age and sex on the amount and distribution of mineral in Eskimo tibiae American journal of physical anthropology 2010 67 4 371 380 10.1002/ajpa.13306704094061590 Search in Google Scholar

Verborgt O, Gibson G J, Schaffler M B. Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. Journal of Bone & Mineral Research, 2000, 15 (1): 60–67. VerborgtO GibsonG J SchafflerM B Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo Journal of Bone & Mineral Research 2000 15 1 60 67 10.1359/jbmr.2000.15.1.6010646115 Search in Google Scholar

Qu C, Yu S W, Feng X Q, et al. Damage model of bone under mechanical and electromagnetic loadings. Computational Materials Science, 2012, 57: 89–93. QuC YuS W FengX Q Damage model of bone under mechanical and electromagnetic loadings Computational Materials Science 2012 57 89 93 10.1016/j.commatsci.2011.06.037 Search in Google Scholar

Tsuji K, Bandyopadhyay A, Harfe B D, et al. BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nature Genetics, 2006, 38 (12) :1424–1429. TsujiK BandyopadhyayA HarfeB D BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing Nature Genetics 2006 38 12 1424 1429 10.1038/ng1916 Search in Google Scholar

JL. Wolff: The law of bone remodeling. (Springer, Berlin, 1986). WolffJL The law of bone remodeling Springer Berlin 1986 10.1007/978-3-642-71031-5 Search in Google Scholar

Qin Q H, Ye J Q. Thermoelectroelastic solutions for internal bone remodeling under axial and transverse loads. International Journal of Solids & Structures, 2004, 41 (9–10): 2447–2460. QinQ H YeJ Q Thermoelectroelastic solutions for internal bone remodeling under axial and transverse loads International Journal of Solids & Structures 2004 41 9–10 2447 2460 10.1016/j.ijsolstr.2003.12.026 Search in Google Scholar

Qin Q H, Qu C, Ye J. Thermoelectroelastic solutions for surface bone remodeling under axial and transverse loads. Biomaterials, 2005, 26 (33): 6798–6810. QinQ H QuC YeJ Thermoelectroelastic solutions for surface bone remodeling under axial and transverse loads Biomaterials 2005 26 33 6798 6810 10.1016/j.biomaterials.2005.03.042 Search in Google Scholar

Giordano N, Battisti E, Geraci S, et al. Effect of electromagnetic fields on bone mineral density and biochemical markers of bone turnover in osteoporosis: a single-blind, randomized pilot study. Current Therapeutic Research, 2001, 62 (3): 187–193. GiordanoN BattistiE GeraciS Effect of electromagnetic fields on bone mineral density and biochemical markers of bone turnover in osteoporosis: a single-blind, randomized pilot study Current Therapeutic Research 2001 62 3 187 193 10.1016/S0011-393X(01)80030-8 Search in Google Scholar

Qu C, Qin Q H, Kang Y. A hypothetical mechanism of bone remodeling and modeling under electromagnetic loads. Biomaterials, 2006, 27 (21): 4050–4057. QuC QinQ H KangY A hypothetical mechanism of bone remodeling and modeling under electromagnetic loads Biomaterials 2006 27 21 4050 4057 10.1016/j.biomaterials.2006.03.015 Search in Google Scholar

Bentolila V, Boyce T M, Fyhrie D P, et al. Intracortical remodeling in adult rat long bones after fatigue loading. Bone, 1998, 23 (3): 275–281. BentolilaV BoyceT M FyhrieD P Intracortical remodeling in adult rat long bones after fatigue loading Bone 1998 23 3 275 281 10.1016/S8756-3282(98)00104-5 Search in Google Scholar

Kameo Y, Adachi T. Interstitial fluid flow in canaliculi as a mechanical stimulus for cancellous bone remodeling: in silico validation. Biomech Model Mechanobiol, 2014, 13 (4): 851–860. KameoY AdachiT Interstitial fluid flow in canaliculi as a mechanical stimulus for cancellous bone remodeling: in silico validation Biomech Model Mechanobiol 2014 13 4 851 860 10.1007/s10237-013-0539-324174063 Search in Google Scholar

Klika, Václav, Pérez, Maria Angelés, García-Aznar, José Manuel, et al. A coupled mechano-biochemical model for bone adaptation. Journal of Mathematical Biology, 2014, 69 (6–7): 1383–1429. KlikaVáclav PérezMaria Angelés García-AznarJosé Manuel A coupled mechano-biochemical model for bone adaptation Journal of Mathematical Biology 2014 69 6–7 1383 1429 10.1007/s00285-013-0736-924212399 Search in Google Scholar

Colloca M, Blanchard R, Hellmich C, et al. A multiscale analytical approach for bone remodeling simulations: linking scales from collagen to trabeculae. Bone, 2014, 64 :303–313. CollocaM BlanchardR HellmichC A multiscale analytical approach for bone remodeling simulations: linking scales from collagen to trabeculae Bone 2014 64 303 313 10.1016/j.bone.2014.03.05024713194 Search in Google Scholar

Giorgio I, Dell’Isola F, Andreaus U, et al. On mechanically driven biological stimulus for bone remodeling as a diffusive phenomenon[J]. Biomechanics and Modeling in Mechanobiology, 2019, 18 (3): 1639–1663. GiorgioI Dell’IsolaF AndreausU On mechanically driven biological stimulus for bone remodeling as a diffusive phenomenon [J] Biomechanics and Modeling in Mechanobiology 2019 18 3 1639 1663 10.1007/s10237-019-01166-w Search in Google Scholar

Bentolila V, Boyce T M, Fyhrie D P, et al. Intracortical remodeling in adult rat long bones after fatigue loading. Bone, 1998, 23 (3): 275–281. BentolilaV BoyceT M FyhrieD P Intracortical remodeling in adult rat long bones after fatigue loading Bone 1998 23 3 275 281 10.1016/S8756-3282(98)00104-5 Search in Google Scholar

Mcnamara L M, Prendergast P J. Bone remodelling algorithms incorporating both strain and microdamage stimuli. journal of biomechanics, 2007, 40 (6): 1381–1391. McnamaraL M PrendergastP J Bone remodelling algorithms incorporating both strain and microdamage stimuli Journal of biomechanics 2007 40 6 1381 1391 10.1016/j.jbiomech.2006.05.007 Search in Google Scholar

Y.L. Lee, J. Pan, et al. Fatigue testing and analysis: theory and practice. Burlington, MA: Butterworth-Heinemann. 2004. LeeY.L. PanJ. Fatigue testing and analysis: theory and practice Burlington, MA Butterworth-Heinemann 2004 Search in Google Scholar

Wang C, Zhang C, Han J, et al. Simulated evolution of the vertebral body based on basic multicellular unit activities. journal of bone & mineral metabolism, 2011, 29 (4): 466–476. WangC ZhangC HanJ Simulated evolution of the vertebral body based on basic multicellular unit activities Journal of bone & mineral metabolism 2011 29 4 466 476 10.1007/s00774-010-0244-6 Search in Google Scholar

M. Fernández-Martínez. A survey on fractal dimension for fractal structures. Applied Mathematics and Nonlinear Sciences, 2016, 1 (2) 437–472. Fernández-MartínezM. A survey on fractal dimension for fractal structures Applied Mathematics and Nonlinear Sciences 2016 1 2 437 472 10.21042/AMNS.2016.2.00037 Search in Google Scholar

Belgaid Y, Helal M, Venturino E. Mathematical analysis of a B-cell chronic lymphocytic leukemia model with immune response. Applied Mathematics and Nonlinear ences, 2019, 4(2):551–558. BelgaidY HelalM VenturinoE Mathematical analysis of a B-cell chronic lymphocytic leukemia model with immune response Applied Mathematics and Nonlinear ences 2019 4 2 551 558 10.2478/AMNS.2019.2.00052 Search in Google Scholar

Mhlanga A. A theoretical model for the transmission dynamics of HIV/HSV-2 co-infection in the presence of poor HSV-2 treatment adherence. Applied Mathematics and Nonlinear Sciences, 2018, 3 (2): 603–626. MhlangaA A theoretical model for the transmission dynamics of HIV/HSV-2 co-infection in the presence of poor HSV-2 treatment adherence Applied Mathematics and Nonlinear Sciences 2018 3 2 603 626 10.2478/AMNS.2018.2.00047 Search in Google Scholar

C.R. Jacobs, Numerical Simulation of Bone Adaptation to Mechanical Loading, Dissertation for the Degree of Doctor of Philosophy, Stanford University, 1994. JacobsC.R. Numerical Simulation of Bone Adaptation to Mechanical Loading Dissertation for the Degree of Doctor of Philosophy Stanford University 1994 Search in Google Scholar

Carter D R, Hayes W C, Schurman D J. Fatigue life of compact bone—II. Effects of microstructure and density. Journal of Biomechanics, 1976, 9 (4): 211–218. CarterD R HayesW C SchurmanD J Fatigue life of compact bone—II. Effects of microstructure and density Journal of Biomechanics 1976 9 4 211 218 10.1016/0021-9290(76)90006-3 Search in Google Scholar

M. G. Mullender, R. Huiskes. Proposal for the regulatory mechanism of Wolff's law. Journal of Orthopaedic Research, 2010, 13 (4): 503–512. MullenderM. G. HuiskesR. Proposal for the regulatory mechanism of Wolff's law Journal of Orthopaedic Research 2010 13 4 503 512 10.1002/jor.11001304057674066 Search in Google Scholar

Mullender MG, Huiskes R. Proposal for the regulatory mechanism of Wolff's law. Journal of Orthopaedic Research, 1995;13 (4): 503–512. MullenderMG HuiskesR Proposal for the regulatory mechanism of Wolff's law Journal of Orthopaedic Research 1995 13 4 503 512 10.1002/jor.1100130405 Search in Google Scholar

Taylor D, Kuiper J H. The prediction of stress fractures using a ‘stressed volume’ concept. Journal of Orthopaedic Research, 2001, 19 (5):919–926. TaylorD KuiperJ H The prediction of stress fractures using a ‘stressed volume’ concept Journal of Orthopaedic Research 2001 19 5 919 926 10.1016/S0736-0266(01)00009-2 Search in Google Scholar

Garcıá, J. M., Doblaré, M. and Cegoñino, J.. Bone remodelling simulation: a tool for implant design. Computational Materials Science, 2002, 25 (1–2): 100–114. GarcıáJ. M. DoblaréM. CegoñinoJ. Bone remodelling simulation: a tool for implant design Computational Materials Science 2002 25 1–2 100 114 10.1016/S0927-0256(02)00254-9 Search in Google Scholar

eISSN:
2444-8656
Lingua:
Inglese
Frequenza di pubblicazione:
Volume Open
Argomenti della rivista:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics