Accesso libero

Existence of solution for Mean-field Reflected Discontinuous Backward Doubly Stochastic Differential Equation

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Introduction

The theory of nonlinear backward stochastic differential equations (BSDEs in short) have been first introduced by Pardoux and Peng [6] (1990). They proved the existence and uniqueness of the adapted processes (Y,Z), solution of the following equation: Yt=ξ+tTf(s,Ys,Zs)dstTZsdWs,0tT,Y_{t}=\xi +\int_{t}^{T}f\left(s,Y_{s},Z_{s}\right) ds-\int_{t}^{T}Z_{s}dW_{s},\qquad 0\leq t\leq T, where the terminal value ξ is square integrable and the coefficient f is uniformly Lipschitz in (y, z), several authors interested in weakening this assumption; In [5] (1997), the authers prove the existence of a solution for one dimensional backward stochastic differential equations where the coefficient is continuous and it has a linear growth, they also obtain the existence of a minimal solution. In [3] (2008) the author prove the existence of the solution to BSDEs whose coefficient may be discontinuous in y and continuous in z.

A new kind of backward stochastic differential equations was introduced by Pardoux and Peng [7] in (1994) which is a class of backward doubly stochastic differential equation (BDSDE for short) of the form: Yt=ξ+tTf(s,Ys,Zs)ds+tTg(s,Ys,Zs)dBstTZsdWs,0tT,Y_{t}=\xi +\int_{t}^{T}f\left(s,Y_{s},Z_{s}\right) ds+\int_{t}^{T}g\left(s,Y_{s},Z_{s}\right) d\overleftarrow{B}_{s}-\int_{t}^{T}Z_{s}dW_{s},\qquad 0\leq t\leq T, with two different directions of stochastic integrals, i.e., the equation involves both a standard (forward) stochastic integral dWt and a backward stochastic integral dBt and ξ is a random variable termed the terminal condition.

After the authors have proved an existence and unique solution when f and g are uniform Lipschitz, several authors interested to weakening this assumption, see [4]. In [9](2005) the authors obtained the existence of the solution of BDSDE under continuous assumption and gave the comparison theorem for one dimensional BDSDE.

On the other hand Bahlali et al [1] (2009) introduced a special class of reflected BDSDEs (RBDSDEs in short) which is a BDSDE but the solution is forced to stay above a lower barrier. In particular, a solution of such equation is a triplet of processes (Y,Z,K) satisfying Yt=ξ+tTf(s,Ys,Zs)ds+tTg(s,Ys,Zs)dBs+tTdKstTZsdWs,t[0,T],Y_{t}=\xi+\int_{t}^{T}f(s,Y_{s},Z_{s})ds+\int_{t}^{T}g(s,Y_{s},Z_{s})dB_{s}+\int_{t}^{T}dK_{s}-\int_{t}^{T}Z_{s}dW_{s},\quad t\in \left[ 0,T\right], and YtSt a.s. for any t ∈ [0, T ]. The role of the nondecreasing continuous process (Kt)t∈ [0, T] is to puch upward the process Y in order to keep it above S, it satisfies the skorohod condition 0T(YsSs)dKs=0.\int_{0}^{T}\left(Y_{s}-S_{s}\right) dK_{s}=0.

In this paper, motivated by the above results and by the result introduced by Xu, R. (2012) [10], we establish the existence of the a minimal solution to the following reflected MF-BDSDE, Yt=ξ+tTE'(f(s,ω,ω',Ys,(Ys)',Zs,(Zs)'))ds+tTdKs+tTE'(g(s,ω,ω',Ys,(Ys)',Zs,(Zs)'))dBstTZsdWs,0tT,\matrix{{Y_{t}=\xi +\int_{t}^{T}E^{^{\prime}}\left(f(s,\omega,\omega^{^{\prime}},Y_{s},\left(Y_{s}\right)^{^{\prime}},Z_{s},\left(Z_{s}\right)^{^{\prime}})\right) ds+\int_{t}^{T}dK_{s}} \hfill &\cr +\int_{t}^{T}E^{^{\prime}}\left(g(s,\omega,\omega^{^{\prime}},Y_{s},\left(Y_{s}\right)^{^{\prime}},Z_{s},\left(Z_{s}\right)^{^{\prime}})\right) d\overleftarrow{B}_{s}-\int_{t}^{T}Z_{s}dW_{s},\quad0\leq t\leq T,\hfill &\cr} whose coefficient may be discontinuous in y and continuous in z.

In Section 2, we give some preliminaries about MF-BDSDE with one continuous barrier.

In Section 3, under certain assumptions, we obtain the existence for a minimal solution to the Mean-field backward doubly stochastic differential equation with one continuous barrier and discontinuous generator (left-continuous).

Framework

Let (Ω, , P) be a complete probability space. For T > 0, let {Wt, 0 ≤ tT} and {Bt, 0 ≤ tT} be two independent standard Brownian motion defined on (Ω, , P) with values in ℝd and ℝ, respectively.

Let tW:=σ(Ws;0st)\mathcal{F}_{t}^{W}:=\sigma (W_{s};0\leq s\leq t) , and t,TB:=σ(BsBt;tsT)\mathcal{F}_{t,T}^{B}:=\sigma (B_{s}-B_{t};t\leq s\leq T), , completed with P-null sets. We put, t:=tWt,TB.\mathcal{F}_{t}:=\mathcal{F}_{t}^{W}\vee \mathcal{F}_{t,T}^{B}. It should be noted that (t) is not an increasing family of sub σ–fields, and hence it is not a filtration.

Let (Ω¯,¯,P¯)=(Ω×Ω,tt,PP)\left(\bar{\Omega},\mathcal{\bar{F}},\bar{P}\right) =\left(\Omega \times \Omega,\mathcal{F}_{t}\mathcal{\otimes F}_{t},P\mathcal{\otimes}P\right) be the (non-completed) product of (Ω , P) with itself. We denote the filtration of this product space by ¯={¯t=tt,0tT}\mathcal{\bar{F}=}\left\{\mathcal{\bar{F}}_{t}=\mathcal{F}_{t}\mathcal{\otimes F}_{t},0\leq t\leq T\right\} .

A random variable ξL0 (Ω, , P;ℝn) originally defined on Ω is extended canonically to Ω¯:ξ´(ω´,ω)=ξ(ω´),(ω´,ω)Ω¯=Ω×Ω.\bar{\Omega}\colon \acute{\xi}\left(\acute{\omega},\omega \right) =\xi \left(\acute{\omega}\right),\left(\acute{\omega},\omega \right) \in \bar{\Omega}=\Omega \times \Omega .

For every θL1(Ω¯,¯,P¯)\theta \in L^{1}\left(\bar{\Omega},\mathcal{\bar{F}},\bar{P}\right) , the variable θ (·, ω) : Ω → ℝ belongs to L1(Ω¯,¯,P¯)L^{1}\left(\bar{\Omega},\mathcal{\bar{F}},\bar{P}\right) , P ()−a.s,. We denote its expectation by É(θ(,ω))=Ωθ(ω´,ω)P(dω´)\acute{E}\left(\theta \left(\cdot,\omega \right) \right) =\int_{\Omega}\theta\left(\acute{\omega},\omega \right) P\left(d\acute{\omega}\right)

Notice that {É(θ)=É(θ(,ω))L1(Ω,,P)andE¯(θ)=Ω¯θdP¯=ΩÉ(θ(,ω))P(dω)=E(É(θ)).\left\{{\matrix{\acute{E}\left(\theta \right) =\acute{E}\left(\theta \left(\cdot,\omega\right) \right) \in L^{1}\left(\Omega,\mathcal{F},P\right) \hfill \\ \text{and} \hfill \\ \bar{E}\left(\theta \right) =\int_{\bar{\Omega}}\theta d\bar{P}=\int_{\Omega}\acute{E}\left(\theta \left(\cdot,\omega \right) \right)P\left(d\omega \right) =E\left(\acute{E}\left(\theta \right) \right).}}\right.

We consider the following spaces of processus:

Let ℳ2 (0, T, ℝd) denote the set of d– dimensional, t– progressively measurable processes {φt;t ∈ [0, T ]}, such that 𝔼0T|φt|2dt<\mathbb{E}\int_{0}^{T}\left\vert \varphi_{t}\right\vert^{2}dt<\infty .

We denote by 𝒮2 (0, T, ℝd), the set of t– adapted cádlág processes {φt; t ∈ [0, T]}, which satisfy 𝔼(sup0 ≤ t ≤ T|φt|2) < ∞.

𝒜2 set of continuous, increasing, t-adapted process K: [0, T] × Ω → [0, +∞) with K0 = 0 and 𝔼(KT)2 < +∞.

𝕃2 set of T- measurable random variables ξ :Ω → ℝ with 𝔼 |ξ|2 < +∞.

Definition 1

A solution of equation (2) is a triple (Y, Z, K) which belongs to the space 𝒮2 (0, T, ℝd) × ℳ2 (0, T, ℝd) × 𝒜2 and satisfies (2) such that: {StYt,0tT,0T(YsLs)dKs=0.\left\{\matrix{S_{t}\leq Y_{t},\text{}0\leq t\leq T, \\ \int_{0}^{T}\left(Y_{s}-L_{s}\right) dK_{s}=0.}\right.

Remark 1

In the case where S = −∞ (i.e., MF-BDSDEs without lower barrier), the process K has no effect i.e., K ≡ 0.

Remark 2

In the setup of system (2) the process S (·) play the role of reflecting barrier.

Remark 3

The state process Y (·) is forced to stay above the lower barrier S (·), thanks to the action of the increasing reflection process K (·).

The coefficient of mean-field Reflected BDSDE is a function. We assume that f and g satisfy the following assumptions on the data (ξ, f, g, S):

(H.1) The terminal value ξ be a given random variable in 𝕃2.

(H.2) (St)t ≥ 0, is a continuous progressively measurable real valued process satisfying 𝔼(sup0tT(St+)2)<+,whereSt+:=max(St,0).\mathbb{E}\left({\rm {sup}}_{0\leq t\leq T}\left(S_{t}^{+}\right)^{2}\right)<+\infty, \qquad {\rm where} \qquad S_{t}^{+}:=\max \left(S_{t},0\right).

(H.3) For t ∈ [0, T], STξ, ℙ-almost surely.

(H.4)f : Ω × [0, T] × ℝ × ℝ × ℝd × ℝd → ℝ; g : Ω × [0, T] × ℝ × ℝ × ℝd × ℝd → ℝk be jointly measurable such that for any (y, y, z, z) ∈ ℝ × ℝ × ℝd × ℝd, {f(,ω,y,y',z,z')2(0,T,d),andg(,ω,y,y',z,z')2(0,T,d).\left\{\matrix{f(\cdot,\omega,y,y^{^{\prime}},z,z^{^{\prime}})\in \mathcal{M}^{2}\left(0,T,\mathbb{R}^{d}\right),\\ \text{and} \\ g(\cdot,\omega,y,y^{^{\prime}},z,z^{^{\prime}})\in \mathcal{M}^{2}\left(0,T,\mathbb{R}^{d}\right).}\right.

(H.5) There exist constant C ≥ 0 and a constant 0α120\leq \alpha \leq \frac{1}{2} such that for every (ω, t) ∈ Ω × [0, T ] and (y, y) ∈ ℝ2, (z, z) ∈ ℝd × ℝd, {(i)|f(t,y1,y1',z1,z1')f(t,y2,y2',z2,z2')|2C{|y1y2|2+|y1'y2'|2+|z1z2|2+|z1'z2'|2},(ii)|g(t,y1,y1',z1,z1')g(t,y2,y2',z2,z2')|2C{|y1y2|2+|y1'y2'|2}+α{|z1z2|2+|z1'z2'|2}.\left\{{\matrix{{\left( i \right){{\left| {f(t,{y_1},y_1',{z_1},z_1') - f(t,{y_2},y_2',{z_2},z_2')} \right|}^2} \le C\left\{{{{\left| {{y_1} - {y_2}} \right|}^2} + {{\left| {y_1' - y_2'} \right|}^2} + {{\left| {{z_1} - {z_2}} \right|}^2} + {{\left| {z_1' - z_2'} \right|}^2}} \right\},} \hfill \cr {\left( {ii} \right){{\left| {g(t,{y_1},y_1',{z_1},z_1') - g(t,{y_2},y_2',{z_2},z_2')} \right|}^2} \le C\left\{{{{\left| {{y_1} - {y_2}} \right|}^2} + {{\left| {y_1' - y_2'} \right|}^2}} \right\} + \alpha \left\{{{{\left| {{z_1} - {z_2}} \right|}^2} + {{\left| {z_1' - z_2'} \right|}^2}} \right\}.} \hfill \cr}} \right.

(H.6) (i) For a.e (t, ω) the mapping (y, y, z, z) → f (t, y, y, z, z) is a cotinuous. (ii) There exist constant C ≥ 0 and a constant 0α120\leq \alpha \leq \frac{1}{2} such that for every (ω, t) ∈ Ω × [0, T] and (y, y) ∈ ℝ2, (z, z) ∈ ℝd × ℝd, {|f(t,y,y',z,ź)|C(1+|y|+|y'|+|z|+|ź|),gsatisfies(H.2)(ii).\left\{{\matrix{{\left| {f\left({t,y,{y'},z,z'} \right)} \right| \le C\left({1 + \left| y \right| + \left| {{y'}} \right| + \left| z \right| + \left| {z'} \right|} \right),} \hfill\cr{} \hfill\cr{g\,{\rm{satisfies}}\,\left({H.2} \right)\left({ii} \right).} \hfill\cr}} \right.

We recall the following existence results.

Proposition 1

[2] (2014). Under the assumptions (H.1)–(H.5) the reflected BDSDE (2) has a unique solution (Y, Z, K) ∈ 𝒮2 (0, T, ℝd) × ℳ2 (0, T, ℝd) × 𝒜2.

Existence result

In this section we are interested in weakening the conditions on f. We assume that f and g satisfy the following assumptions:

(H.7) Linear growth: There esists a nonnegative process ft ∈ 𝕄2 (0, T, ℝd) such that (t,y,y',z)[0,T]×2×d,|f(t,y,y',z)|ft(ω)+C(|y|+|y'|+|z|).\forall \left(t,y,y^{^{\prime}},z\right) \in \left[ 0,T\right] \times \mathbb{R}^{2}\times \mathbb{R}^{d},\text{}\left\vert f\left(t,y,y^{^{\prime}},z\right) \right\vert \leq f_{t}\left(\omega \right) +C\left(\left\vert y\right\vert +\left\vert y^{^{\prime}}\right\vert +\left\vert z\right\vert \right).

(H.8)f (t, ·, y, z): ℝ → ℝ is a left continuous and f (t, y, ·,·) is a cotinuous.

(H.9) There exists a continuous fonction π : [0, T ] × (ℝ)2 × ℝd satisfying for y1y2, (y1',y2')()2\left( y_{1}^{^{\prime}},y_{2}^{^{\prime}}\right) \in \left( \mathbb{R}\right)^{2} , (z1, z2) ∈ (ℝd)2{|π(t,y,y',z)|C(|y|+|y'|+|z|),f(t,ω,y1,y1',z1)f(t,ω,y2,y2',z2)π(t,y1y2,y1'y2',z1z2).\left\{\matrix{\left\vert \pi \left(t,y,y^{^{\prime}},z\right) \right\vert \leq C\left(\left\vert y\right\vert +\left\vert y^{^{\prime}}\right\vert +\left\vert z\right\vert \right), \hfill \\ f\left(t,\omega,y_{1},y_{1}^{^{\prime}},z_{1}\right) -f\left(t,\omega,y_{2},y_{2}^{^{\prime}},z_{2}\right) \geq \pi \left(t,y_{1}-y_{2},y_{1}^{^{\prime}}-y_{2}^{^{\prime}},z_{1}-z_{2}\right).}\right.

(H.10) Monotonicity in y: ∀ (y, y, z), f (t, y, y, z) is increasing in y.

(H.11)g satisfies (H.5)(ii) and g(t, 0, 0, 0) ≡ 0.

Hence, we only consider the following type of Mean-field reflected BDSDE: Yt=ξ+tTE'(f(s,ω,ω',Ys,(Y˜s)',Zs))ds+tTdKs+tTE'(g(s,ω,ω',Ys,(Y˜s)',Zs))dBstTZsdWs,0tT.\matrix{Y_{t}=\xi +\int_{t}^{T}E^{^{\prime}}\left(f(s,\omega,\omega^{^{\prime}},Y_{s},\left(\tilde{Y}_{s}\right)^{^{\prime}},Z_{s})\right)ds+\int_{t}^{T}dK_{s} \hfill \\ +\int_{t}^{T}E^{^{\prime}}\left(g(s,\omega,\omega^{^{\prime}},Y_{s},\left(\tilde{Y}_{s}\right)^{^{\prime}},Z_{s})\right) d\overleftarrow{B}_{s}-\int_{t}^{T}Z_{s}dW_{s},\ 0\leq t\leq T.}

Proposition 2

[2] (2014). Under the assumption (H.1)–(H.4) and (H.6), and for any random variable ξ ∈ 𝕃2the mean-field RBDSDE (3) a has an adapted solution (Y, Z, K) ∈ 𝒮2 (0, T, ℝd) × ℳ2 (0, T, ℝd) × 𝒜2, which is a minimal one, in the sense that, if (Y*, Z*, K*) is any other solution we Y ≤ Y*, P – a.s.

Now we prove a technical Lemma before we introduce the main theorem.

Lemma 3

Let π (t, y, y, z) satisfies (H.9), g satisfies (H.11) and h belongs in2 (0, T, ℝd). For a continuous function of finite variation K˜\tilde{K} belong in 𝒜2we consider the processes(Y˜,Z˜)𝒮2(0,T,)×2(0,T,d)\left(\tilde{Y},\tilde{Z}\right) \in \mathcal{S}^{2}\left(0,T,\mathbb{R}\right) \times \mathcal{M}^{2}\left(0,T,\mathbb{R}^{d}\right)such that:{(i)Y˜t=ξ+tTE'(π(s,ω,ω',Y˜s,(Y˜s)',Z˜s)+h(s))ds+tTdK˜s+tTE'(g(s,ω,ω',Y˜s,(Y˜s)',Z˜s))dBstTZ˜sdWs,0tT,(ii)0TY˜sdK˜s0.\left\{\matrix{\left(i\right) \text{}\tilde{Y}_{t}=\xi +\int_{t}^{T}E^{^{\prime}}\left(\pi \left(s,\omega,\omega^{^{\prime}},\tilde{Y}_{s},\left(\tilde{Y}_{s}\right)^{^{\prime}},\tilde{Z}_{s}\right) +h\left(s\right) \right)ds+\int_{t}^{T}d\tilde{K}_{s} \hfill\\ +\int_{t}^{T}E^{^{\prime}}\left(g\left(s,\omega,\omega^{^{\prime}},\tilde{Y}_{s},\left(\tilde{Y}_{s}\right)^{^{\prime}},\tilde{Z}_{s}\right)\right) d\overleftarrow{B}_{s}-\int_{t}^{T}\tilde{Z}_{s}dW_{s},\ 0\leq t\leq T, \hfill \\ \left(ii\right) \text{}\int_{0}^{T}\tilde{Y}_{s}^{-}d\tilde{K}_{s}\geq 0. \hfill}\right.Then we have

The MF-RBDSDE (4) has a least one solution(Y˜,Z˜,K˜)𝒮2(0,T,d)×2(0,T,d)×𝒜2\left(\tilde{Y},\tilde{Z},\tilde{K}\right) \in \mathcal{S}^{2}\left(0,T,\mathbb{R}^{d}\right) \times \mathcal{M}^{2}\left(0,T,\mathbb{R}^{d}\right) \times \mathcal{A}^{2}

if h(t) ≥ 0 and ξ ≥ 0, we haveY˜t0\tilde{Y}_{t}\geq 0 , dℙ × dt – a.s.

Proof

(i) See [2], (2014). (ii) Applying Tanaka's formula to |Y˜t|2\left\vert \tilde{Y}_{t}^{-}\right\vert^{2} , we have 𝔼|Y˜t|2+𝔼tT1{Y˜s<0}|Z˜s|2ds=𝔼|ξ|22𝔼tTY˜sE'(π(s,Y˜s,(Y˜s)',Z˜s)+h(s))ds2𝔼tTY˜sdK˜s+𝔼tT1{Y˜s<0}||E'(g(s,Y˜s,(Y˜s)',Z˜s))||2ds.\matrix{\mathbb{E}\left\vert \tilde{Y}_{t}^{-}\right\vert^{2}+\mathbb{E}\int_{t}^{T}1_{\left\{\tilde{Y}_{s}<0\right\}}\left\vert \tilde{Z}_{s}\right\vert^{2}ds &=&\mathbb{E}\left\vert \xi^{-}\right\vert^{2}-2\mathbb{E}\int_{t}^{T}\tilde{Y}_{s}^{-}E^{^{\prime}}\left(\pi (s,\tilde{Y}_{s},\left(\tilde{Y}_{s}\right)^{^{\prime}},\tilde{Z}_{s})+h\left(s\right) \right) ds \hfill \\ \hfill &&-2\mathbb{E}\int_{t}^{T}\tilde{Y}_{s}^{-}d\tilde{K}_{s}+\mathbb{E}\int_{t}^{T}1_{\left\{\tilde{Y}_{s}<0\right\}}\left\vert \left\vert E\left(^{^{\prime}}g(s,\tilde{Y}_{s},\left(\tilde{Y}_{s}\right)^{^{\prime}},\tilde{Z}_{s})\right) \right\vert \right\vert^{2}ds.}

Since 2𝔼tTY˜sdK˜s0-2\mathbb{E}\int_{t}^{T}\tilde{Y}_{s}^{-}d\tilde{K}_{s}\leq 0 , h(s) ≥ 0 and ξ ≥ 0, we get 𝔼|Y˜t|2+𝔼tT1{Y˜s<0}|Z˜s|2ds2𝔼tTY˜sE'(π(s,Y˜s,(Y˜s)',Z˜s))ds+𝔼tT1{Y˜s<0}||E'(g(s,Y˜s,(Y˜s)',Z˜s))||2ds\matrix{\mathbb{E}\left\vert \tilde{Y}_{t}^{-}\right\vert^{2}+\mathbb{E}\int_{t}^{T}1_{\left\{\tilde{Y}_{s}<0\right\}}\left\vert \tilde{Z}_{s}\right\vert^{2}ds & \leq -2\mathbb{E}\int_{t}^{T}\tilde{Y}_{s}^{-}E^{^{\prime}}\left(\pi (s,\tilde{Y}_{s},\left(\tilde{Y}_{s}\right)^{^{\prime}},\tilde{Z}_{s})\right) ds \hfill \\& \quad+\mathbb{E}\int_{t}^{T}1_{\left\{\tilde{Y}_{s}<0\right\}}\left\vert \left\vert E^{^{\prime}}\left(g(s,\tilde{Y}_{s},\left(\tilde{Y}_{s}\right)^{^{\prime}},\tilde{Z}_{s})\right) \right\vert \right\vert^{2}ds}

By (H.9), we get |π(s,Y˜s,(Y˜s)',Z˜s)|C(|Y˜s|+|(Y˜s)'|+|Z˜s|)\left\vert \pi \left(s,\tilde{Y}_{s},\left(\tilde{Y}_{s}\right)^{^{\prime}},\tilde{Z}_{s}\right)\right\vert \leq C\left(\left\vert \tilde{Y}_{s}\right\vert +\left\vert\left(\tilde{Y}_{s}\right)^{^{\prime}}\right\vert +\left\vert \tilde{Z}_{s}\right\vert \right) and by assumption (H.11) for g, we have 𝔼|Y˜t|2+𝔼tT1{Y˜s<0}|Z˜s|2ds(4C2+C2β+2C)𝔼tT|Y˜s|2ds+(α+β)𝔼tT1{Y˜s<0}|Z˜s|2ds.\matrix{&&\mathbb{E}\left\vert \tilde{Y}_{t}^{-}\right\vert^{2}+\mathbb{E}\int_{t}^{T}1_{\left\{\tilde{Y}_{s}<0\right\}}\left\vert \tilde{Z}_{s}\right\vert^{2}ds \hfill \\ &\leq &\left(4C^{2}+\frac{C^{2}}{\beta}+2C\right) \mathbb{E}\int_{t}^{T}\left\vert \tilde{Y}_{s}^{-}\right\vert^{2}ds+\left(\alpha+\beta \right) \mathbb{E}\int_{t}^{T}1_{\left\{\tilde{Y}_{s}<0\right\}}\left\vert \tilde{Z}_{s}\right\vert^{2}ds.}

Therefore, choosing 0 ≤ β ≤ 1 – α and using Gronwall inequality, we have Y˜t=0\tilde{Y}_{t}^{-}=0 , ℙ – a.s., ∀t ∈ [0, T], which implies that Y˜t0\tilde{Y}_{t}\geq 0 ℙ – a.s., ∀t ∈ [0, T].

Before we prove the main result, we construct a sequence of MF-RBDSDEs as follows: {Y¯t0=ξ+tTE'(C(|Y¯s0|+(Y¯s0)'+|Z¯s0|)fs)ds+tTE'(g(s,Y¯s0+(Y¯s0)'+Z¯s0))dBs+tTdK¯s0tTZ¯s0dWs,0tT,(ii)Y¯t0St,(iii)0T(Y¯s0Ss)dK¯s0=0.\left\{\matrix{\bar{Y}_{t}^{0}=\xi +\int_{t}^{T}E^{^{\prime}}\left(-C\left(\left\vert \bar{Y}_{s}^{0}\right\vert +\left(\bar{Y}_{s}^{0}\right)^{^{\prime}}+\left\vert \bar{Z}_{s}^{0}\right\vert \right) -f_{s}\right) ds \hfill \\ +\int_{t}^{T}E^{^{\prime}}\left(g\left(s,\bar{Y}_{s}^{0}+\left(\bar{Y}_{s}^{0}\right)^{^{\prime}}+\bar{Z}_{s}^{0}\right) \right) d\overleftarrow{B}_{s}+\int_{t}^{T}d\bar{K}_{s}^{0}-\int_{t}^{T}\bar{Z}_{s}^{0}dW_{s},\ 0\leq t\leq T, \\ \\ \left(ii\right) \text{}\bar{Y}_{t}^{0}\geq S_{t}, \hfill\\ \\ \left(iii\right) \text{}\int_{0}^{T}\left(\bar{Y}_{s}^{0}-S_{s}\right) d\bar{K}_{s}^{0}=0. \hfill}\right.{(i)Y¯tn=ξ+tTE'(f(s,Y¯sn1,(Y¯sn1)',Z¯sn1)+π(s,δY¯sn,δ(Y¯sn)',δZ¯tn))ds+tTE'(g(s,Y¯sn,(Y¯sn)',Z¯sn))dBs+tTdK¯sntTZ¯sndWs,0tT,(ii)Y¯tnSt,(iii)0T(Y¯snSs)dk˜sn=0.\left\{\matrix{\left(i\right) \text{}\bar{Y}_{t}^{n}=\xi +\int_{t}^{T}E^{^{\prime}}\left(f\left(s,\bar{Y}_{s}^{n-1},\left(\bar{Y}_{s}^{n-1}\right)^{^{\prime}},\bar{Z}_{s}^{n-1}\right) +\pi \left(s,\delta \bar{Y}_{s}^{n},\delta \left(\bar{Y}_{s}^{n}\right)^{^{\prime}},\delta \bar{Z}_{t}^{n}\right) \right) ds \\ +\int_{t}^{T}E^{^{\prime}}\left(g\left(s,\bar{Y}_{s}^{n},\left(\bar{Y}_{s}^{n}\right)^{^{\prime}},\bar{Z}_{s}^{n}\right) \right) d\overleftarrow{B}_{s}+\int_{t}^{T}d\bar{K}_{s}^{n}-\int_{t}^{T}\bar{Z}_{s}^{n}dW_{s}, 0\leq t\leq T, \hfill \\ \\ \left(ii\right) \text{}\bar{Y}_{t}^{n}\geq S_{t}, \hfill \\ \\ \left(iii\right) \text{}\int_{0}^{T}\left(\bar{Y}_{s}^{n}-S_{s}\right) d\tilde{k}_{s}^{n}=0. \hfill}\right.{(i)Yt0=ξ+tTE'(C(|Ys0|+(Ys0)'+|Zs0|)+fs)ds+tTdKs0+tTE'(g(s,Ys0,(Ys0)'+Zs0))dBstTZs0dWs,0tT,(ii)Yt0St,(iii)0T(Ys0Ss)dKs0=0.\left\{\matrix{\left(i\right) \text{}Y_{t}^{0}=\xi +\int_{t}^{T}E^{^{\prime}}\left(C\left(\left\vert Y_{s}^{0}\right\vert +\left(Y_{s}^{0}\right)^{^{\prime}}+\left\vert Z_{s}^{0}\right\vert \right) +f_{s}\right)ds+\int_{t}^{T}dK_{s}^{0} \\ +\int_{t}^{T}E^{^{\prime}}\left(g\left(s,Y_{s}^{0},\left(Y_{s}^{0}\right)^{^{\prime}}+Z_{s}^{0}\right) \right) d\overleftarrow{B}_{s}-\int_{t}^{T}Z_{s}^{0}dW_{s},\ 0\leq t\leq T, \hfill \\ \\ \left(ii\right) \text{}Y_{t}^{0}\geq S_{t}, \hfill \\ \\ \left(iii\right) \text{}\int_{0}^{T}\left(Y_{s}^{0}-S_{s}\right)dK_{s}^{0}=0. \hfill}\right.

For these solutions above, we get some properties as follows:

Lemma 4

Under the assumptions (H.1) – (H.4) and (H.7) – (H.11), we have for any n ≥ 1 and t ∈ [0, T] Y¯t0Y¯tnY¯tn+1Yt0.\bar{Y}_{t}^{0}\leq \bar{Y}_{t}^{n}\leq \bar{Y}_{t}^{n+1}\leq Y_{t}^{0}.

Proof

We will prove Y¯t0Y¯tn\bar{Y}_{t}^{0}\leq \bar{Y}_{t}^{n} at first. By Eqs. (5), and (6), we have Y¯t1Y¯t0=tTE'(π(s,δY¯s1,δ(Y¯s1)',δZ¯s1)+Λs1)ds+tTE'(g(s,Y¯s1,(Y¯s1)',Z¯s1)g(s,Y¯s0+(Y¯s0)'+Z¯s0))dBs+tT(dK¯s1dK¯s0)tTδZ¯s1dWs,\matrix{\bar{Y}_{t}^{1}-\bar{Y}_{t}^{0} =&\int_{t}^{T}E^{^{\prime}}\left(\pi\left(s,\delta \bar{Y}_{s}^{1},\delta \left(\bar{Y}_{s}^{1}\right)^{^{\prime}},\delta \bar{Z}_{s}^{1}\right) +\Lambda_{s}^{1}\right) ds \hfill \\&+\int_{t}^{T}E^{^{\prime}}\left(g\left(s,\bar{Y}_{s}^{1},\left(\bar{Y}_{s}^{1}\right)^{^{\prime}},\bar{Z}_{s}^{1}\right) -g\left(s,\bar{Y}_{s}^{0}+\left(\bar{Y}_{s}^{0}\right)^{^{\prime}}+\bar{Z}_{s}^{0}\right)\right) d\overleftarrow{B}_{s} \hfill\\ \hfill &+\int_{t}^{T}\left(d\bar{K}_{s}^{1}-d\bar{K}_{s}^{0}\right)-\int_{t}^{T}\delta \bar{Z}_{s}^{1}dW_{s}, \hfill} where Λs1=f(s,Y¯s0,(Y¯s0)',Z¯s0)+C(|Y¯s0|+(Y¯s0)'+|Z¯s0|)+fs\Lambda_{s}^{1}=f\left(s,\bar{Y}_{s}^{0},\left(\bar{Y}_{s}^{0}\right)^{^{\prime}},\bar{Z}_{s}^{0}\right) +C\left(\left\vert \bar{Y}_{s}^{0}\right\vert +\left(\bar{Y}_{s}^{0}\right)^{^{\prime}}+\left\vert \bar{Z}_{s}^{0}\right\vert \right) +f_{s} . By hypothesis (H.7) we have Λs10\Lambda_{s}^{1}\geq 0 , because (Y¯t0,Z¯t0)\left(\bar{Y}_{t}^{0},\bar{Z}_{t}^{0}\right) is the solution of Eq. (5), we get Λs12(0,T,d)\Lambda_{s}^{1}\in \mathcal{M}^{2}\left(0,T,\mathbb{R}^{d}\right) . Therefore, from Lemma 3 we get Y¯t1Y¯t0\bar{Y}_{t}^{1}\geq \bar{Y}_{t}^{0} . Now we want to prove Y¯tnY¯tn+1\bar{Y}_{t}^{n}\leq \bar{Y}_{t}^{n+1} , for any n ≥ 0. We set {δρsn+1=ρsn+1ρsn,Δψn+1(s,δY¯sn+1,δ(Y¯sn+1)',δZ¯sn+1)=ψ(s,δY¯sn+1+Y¯sn,δ(Y¯sn+1)'+(Y¯sn)',δZ¯sn+1+Z¯sn)ψ(s,Y¯sn,(Y¯sn)',Z¯sn).\left\{\matrix{\delta \rho_{s}^{n+1}=\rho_{s}^{n+1}-\rho_{s}^{n}, \hfill \\ \Delta \psi^{n+1}\left(s,\delta \bar{Y}_{s}^{n+1},\delta \left(\bar{Y}_{s}^{n+1}\right)^{^{\prime}},\delta \bar{Z}_{s}^{n+1}\right)\hfill \\ =\psi \left(s,\delta \bar{Y}_{s}^{n+1}+\bar{Y}_{s}^{n},\delta \left(\bar{Y}_{s}^{n+1}\right)^{^{\prime}}+\left(\bar{Y}_{s}^{n}\right)^{^{\prime}},\delta \bar{Z}_{s}^{n+1}+\bar{Z}_{s}^{n}\right) -\psi \left(s,\bar{Y}_{s}^{n},\left(\bar{Y}_{s}^{n}\right)^{^{\prime}},\bar{Z}_{s}^{n}\right).}\right.

Using Eq. (6), we have δY¯tn+1=tTE'(π(s,δY¯sn+1,δ(Y¯sn+1)',δZ¯sn+1)+θsn+1)dstTδZ¯sn+1dWs+tTE'(Δgn+1(s,δY¯sn+1,δ(Y¯sn+1)',δZ¯sn+1))dBs+tTd(δK¯sn+1),\matrix{\delta \bar{Y}_{t}^{n+1} = \hfill &\int_{t}^{T}E^{^{\prime}}\left(\pi \left(s,\delta \bar{Y}_{s}^{n+1},\delta \left(\bar{Y}_{s}^{n+1}\right)^{^{\prime}},\delta \bar{Z}_{s}^{n+1}\right) +\theta_{s}^{n+1}\right)ds-\int_{t}^{T}\delta \bar{Z}_{s}^{n+1}dW_{s} \\&+\int_{t}^{T}E^{^{\prime}}\left(\Delta g^{n+1}(s,\delta \bar{Y}_{s}^{n+1},\delta \left(\bar{Y}_{s}^{n+1}\right)^{^{\prime}},\delta \bar{Z}_{s}^{n+1})\right) d\overleftarrow{B}_{s}+\int_{t}^{T}d\left(\delta \bar{K}_{s}^{n+1}\right),} where θsn+1=Δfn(s,δY¯sn,δ(Y¯sn)',δZ¯sn)π(s,δY¯sn,δ(Y¯sn)',δZ¯sn)\theta_{s}^{n+1}=\Delta f^{n}\left(s,\delta \bar{Y}_{s}^{n},\delta \left(\bar{Y}_{s}^{n}\right)^{^{\prime}},\delta \bar{Z}_{s}^{n}\right)-\pi \left(s,\delta \bar{Y}_{s}^{n},\delta \left(\bar{Y}_{s}^{n}\right)^{^{\prime}},\delta \bar{Z}_{s}^{n}\right) and θs0=Λs1\theta_{s}^{0}=\Lambda_{s}^{1} , ∀n ≥ 0. According to it definition, one cas show that θs0\theta_{s}^{0} and Δgn+1, ∀n ≥ 0 satisfy all assumption of Lemma 3. Moreover, since K¯tn\bar{K}_{t}^{n} is a continuous and increasing process, for all n ≥ 0, δK¯sn+1\delta \bar{K}_{s}^{n+1} is a contiuous process of finite variation and, using the same argument as one appear in [2], on can show that 0T(Y¯sn+1Y¯sn)d(δK¯sn+1)=0T(Y¯sn+1Y¯sn)dK¯sn+10T(Y¯sn+1Y¯sn)dK¯sn=0T(Y¯sn+1Y¯sn)dK¯sn+10,\matrix{\int_{0}^{T}\left(\bar{Y}_{s}^{n+1}-\bar{Y}_{s}^{n}\right)^{-}d\left(\delta \bar{K}_{s}^{n+1}\right) & = \hfill \int_{0}^{T}\left(\bar{Y}_{s}^{n+1}-\bar{Y}_{s}^{n}\right)^{-}d\bar{K}_{s}^{n+1}-\int_{0}^{T}\left(\bar{Y}_{s}^{n+1}-\bar{Y}_{s}^{n}\right)^{-}d\bar{K}_{s}^{n} \\ & =\int_{0}^{T}\left(\bar{Y}_{s}^{n+1}-\bar{Y}_{s}^{n}\right)^{-}d\bar{K}_{s}^{n+1}\geq 0,\hfill} by Lemma 3, we deduce that δY¯tn+10\delta \bar{Y}_{t}^{n+1}\geq 0 , i.e. Y¯tn+1Y¯tn\bar{Y}_{t}^{n+1}\geq \bar{Y}_{t}^{n}t ∈ [0, T], we have Y¯tn+1Y¯tnY¯t0.\bar{Y}_{t}^{n+1}\geq \bar{Y}_{t}^{n}\geq \bar{Y}_{t}^{0}.

Now we shall prove that Y¯tn+1Yt0\bar{Y}_{t}^{n+1}\leq Y_{t}^{0}n ≥ 0, by Eqs.(3) and (7)Yt0Y¯tn+1=tTE'(C(|Ys0Y¯s+1|+|(Ys0)'(Y¯sn+1)'|+|Zs0Z¯sn+1|)+Λsn+1)ds+tTE'(g(s,Ys0,(Ys0)'+Zs0)g(s,s,Y¯sn,(Y¯sn)',Z¯sn))dBs+tT(dKs0dK¯sn+1)+tT(Zs0Z¯sn+1)dWs,\matrix{Y_{t}^{0}-\bar{Y}_{t}^{n+1} =&\int_{t}^{T}E^{^{\prime}}\left(-C\left(\left\vert Y_{s}^{0}-\bar{Y}_{s}^{+1}\right\vert +\left\vert \left(Y_{s}^{0}\right)^{^{\prime}}-\left(\bar{Y}_{s}^{n+1}\right)^{^{\prime}}\right\vert +\left\vert Z_{s}^{0}-\bar{Z}_{s}^{n+1}\right\vert \right)+\Lambda_{s}^{n+1}\right) ds\\&+\int_{t}^{T}E^{^{\prime}}\left(g(s,Y_{s}^{0},\left(Y_{s}^{0}\right)^{^{\prime}}+Z_{s}^{0})-g(s,s,\bar{Y}_{s}^{n},\left(\bar{Y}_{s}^{n}\right)^{^{\prime}},\bar{Z}_{s}^{n})\right) d\overleftarrow{B}_{s}\hfill \\&+\int_{t}^{T}\left(dK_{s}^{0}-d\bar{K}_{s}^{n+1}\right)+\int_{t}^{T}\left(Z_{s}^{0}-\bar{Z}_{s}^{n+1}\right) dW_{s},\hfill} where Λsn+1=C(|Ys0Y¯s+1|+|(Ys0)'(Y¯sn+1)'|+|Zs0Z¯sn+1|+|Ys0|+(Ys0)'+|Zs0|)+fsf(s,Y¯sn,(Y¯sn)',Z¯sn)+π(s,δY¯sn+1,δ(Y¯sn+1)',δZ¯sn+1).\matrix{\Lambda_{s}^{n+1} &=& C\left(\left\vert Y_{s}^{0}-\bar{Y}_{s}^{+1}\right\vert +\left\vert \left(Y_{s}^{0}\right)^{^{\prime}}-\left(\bar{Y}_{s}^{n+1}\right)^{^{\prime}}\right\vert +\left\vert Z_{s}^{0}-\bar{Z}_{s}^{n+1}\right\vert +\left\vert Y_{s}^{0}\right\vert+\left(Y_{s}^{0}\right)^{^{\prime}}+\left\vert Z_{s}^{0}\right\vert \right) \\ &&+f_{s}-f(s,\bar{Y}_{s}^{n},\left(\bar{Y}_{s}^{n}\right)^{^{\prime}},\bar{Z}_{s}^{n})+\pi \left(s,\delta \bar{Y}_{s}^{n+1},\delta \left(\bar{Y}_{s}^{n+1}\right)^{^{\prime}},\delta \bar{Z}_{s}^{n+1}\right).}

By Lemma 3, we deduce that Yt0Y¯tn+10Y_{t}^{0}-\bar{Y}_{t}^{n+1}\geq 0 , i.e. Yt0Y¯tn+1Y_{t}^{0}\geq \bar{Y}_{t}^{n+1} , for all t ∈ [0, T]. Thus we have for all n ≥ 0 Yt0Y¯tn+1Y¯tnY¯t0,d¯×dta.s.t[0,T].Y_{t}^{0}\geq \bar{Y}_{t}^{n+1}\geq \bar{Y}_{t}^{n}\geq \bar{Y}_{t}^{0},\text{}d\mathbb{\bar{P}}\times dt-a.s.\text{}\forall t\in \left[ 0,T\right].

The proof of Lemma 4 is complete.

Theorem 5

Let ξ ∈ 𝕃2 (T, ℝ) and t ∈ [0, T]. Under assumption (H.1) – (H.4) and (H.7) – (H.11), the reflected MF-BDSDEs (2) has a minimal solution(Yt,Zt,Kt)0tT𝒮2(0,T,)×2(0,T,d)×𝒜2.(Y_{t},Z_{t},K_{t})_{0\leq t\leq T}\in \mathcal{S}^{2}\left(0,T,\mathbb{R}\right) \times \mathcal{M}^{2}\left(0,T,\mathbb{R}^{d}\right) \times \mathcal{A}^{2}.

Proof

From Lemma 4, we know (Y¯tn)n0\left(\bar{Y}_{t}^{n}\right)_{n\geq 0} is increasing and bounded in ℳ2 (0, T, ℝd). Since |Y˜tn|max(Y˜t0,Yt0)|Y˜t0|+|Yt0|\left\vert \tilde{Y}_{t}^{n}\right\vert \leq \max\left(\tilde{Y}_{t}^{0},Y_{t}^{0}\right) \leq \left\vert \tilde{Y}_{t}^{0}\right\vert +\left\vert Y_{t}^{0}\right\vert for all t ∈ [0, T], we have supn𝔼(sup0tT|Y¯tn|2)𝔼(sup0tT|Y¯t0|2)+𝔼(sup0tT|Yt0|2)<,\matrix{{\sup}\limits_{n}\mathbb{E}\left({\sup}\limits_{0\leq t\leq T}\left\vert \bar{Y}_{t}^{n}\right\vert^{2}\right) \leq \mathbb{E}\left({\sup}\limits_{0\leq t\leq T}\left\vert \bar{Y}_{t}^{0}\right\vert^{2}\right) +\mathbb{E}\left({\sup}\limits_{0\leq t\leq T}\left\vert Y_{t}^{0}\right\vert^{2}\right) <\infty,} then according to the Lebesgue's dominated convergence theorem, we deduce that (Y¯tn)n0\left(\bar{Y}_{t}^{n}\right)_{n\geq 0} converges in 𝒮2 (0, T, ℝ). We denote by Y¯\bar{Y} the limit of (Y¯tn)n0\left(\bar{Y}_{t}^{n}\right)_{n\geq 0} .

On the other hand from Eq. (6), we deduce that Y¯0n+1=Y¯Tn+1+0TE'(f(s,Y¯sn,(Y¯sn)',Z¯sn)+π(s,δY¯sn+1,δ(Y¯sn+1)',δZ¯sn+1))ds+tTE'(g(s,Y¯sn+1,(Y¯sn+1)',Z¯sn+1))dBs+tTdK¯sn+1tTZ¯sn+1dWs.\matrix{\bar{Y}_{0}^{n+1} =&\bar{Y}_{T}^{n+1}+\int_{0}^{T}E^{^{\prime}}\left(f\left(s,\bar{Y}_{s}^{n},\left(\bar{Y}_{s}^{n}\right)^{^{\prime}},\bar{Z}_{s}^{n}\right) +\pi \left(s,\delta \bar{Y}_{s}^{n+1},\delta \left(\bar{Y}_{s}^{n+1}\right)^{^{\prime}},\delta \bar{Z}_{s}^{n+1}\right) \right) ds \\\hfill&+\int_{t}^{T}E^{^{\prime}}\left(g\left(s,\bar{Y}_{s}^{n+1},\left(\bar{Y}_{s}^{n+1}\right)^{^{\prime}},\bar{Z}_{s}^{n+1}\right) \right) d\overleftarrow{B}_{s}+\int_{t}^{T}d\bar{K}_{s}^{n+1}-\int_{t}^{T}\bar{Z}_{s}^{n+1}dW_{s}.\hfill}

Applying Itô's formula, we obtain 𝔼|Y¯0n+1|2+𝔼0T|Z¯sn+1|2ds𝔼|Y¯Tn+1|2+2𝔼0TY¯sn+1dK¯sn+1+𝔼0T||E'(g(s,Y¯sn+1,(Y¯sn+1)',Z¯sn+1))||2ds+2𝔼0TY¯sn+1E'(f(s,Y¯sn,(Y¯sn)',Z¯sn)+π(s,δY¯sn+1,δ(Y¯sn+1)',δZ¯sn+1))ds.\matrix{\mathbb{E}\left\vert \bar{Y}_{0}^{n+1}\right\vert^{2}+\mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n+1}\right\vert^{2}ds &\leq &\mathbb{E}\left\vert \bar{Y}_{T}^{n+1}\right\vert^{2}+2\mathbb{E}\int_{0}^{T}\bar{Y}_{s}^{n+1}d\bar{K}_{s}^{n+1}+\mathbb{E}\int_{0}^{T}\left\vert \left\vert E^{^{\prime}}\left(g(s,\bar{Y}_{s}^{n+1},\left(\bar{Y}_{s}^{n+1}\right)^{^{\prime}},\bar{Z}_{s}^{n+1})\right) \right\vert \right\vert^{2}ds \\&&+2\mathbb{E}\int_{0}^{T}\bar{Y}_{s}^{n+1}E^{^{\prime}}\left(f(s,\bar{Y}_{s}^{n},\left(\bar{Y}_{s}^{n}\right)^{^{\prime}},\bar{Z}_{s}^{n})+\pi\left(s,\delta \bar{Y}_{s}^{n+1},\delta \left(\bar{Y}_{s}^{n+1}\right)^{^{\prime}},\delta \bar{Z}_{s}^{n+1}\right) \right) ds.}

From assumption (H.7) and Yöung's inequality, we get 2𝔼0TY¯tn+1E'[f(s,Y¯sn,(Y¯sn)',Z¯sn)]ds2𝔼0TY¯sn+1E'[fs(ω)+C(1+|Y¯sn|+|(Y¯sn)'|+|Z¯sn|)]ds,4C2𝔼0T|Y¯sn+1|2ds+(4C2+1)𝔼0T|Y¯sn+1|2ds+𝔼0T|Y¯sn|2ds+16C2𝔼0T|Y¯sn+1|2ds+116𝔼0T|Z¯sn|2ds+𝔼0T|fs(ω)|2ds,=(24C2+1)𝔼0T|Y¯sn+1|2ds+𝔼0T|Y¯sn|2ds+116𝔼0T|Z¯sn|2ds+𝔼0T|fs(ω)|2ds,\matrix{\quad2\mathbb{E}\int_{0}^{T}\bar{Y}_{t}^{n+1}E^{^{\prime}}\left[ f(s,\bar{Y}_{s}^{n},\left(\bar{Y}_{s}^{n}\right)^{^{\prime}},\bar{Z}_{s}^{n})\right]ds \notag \hfill\\\leq 2\mathbb{E}\int_{0}^{T}\bar{Y}_{s}^{n+1}E^{^{\prime}}\left[f_{s}\left(\omega \right) +C\left(1+\left\vert \bar{Y}_{s}^{n}\right\vert +\left\vert \left(\bar{Y}_{s}^{n}\right)^{^{\prime}}\right\vert+\left\vert \bar{Z}_{s}^{n}\right\vert \right) \right] ds, \notag \hfill\\\leq 4C^{2}\mathbb{E}\int_{0}^{T}\left\vert \bar{Y}_{s}^{n+1}\right\vert^{2}ds+\left(4C^{2}+1\right) \mathbb{E}\int_{0}^{T}\left\vert \bar{Y}_{s}^{n+1}\right\vert^{2}ds+\mathbb{E}\int_{0}^{T}\left\vert \bar{Y}_{s}^{n}\right\vert^{2}ds \hfill\\\quad+16C^{2}\mathbb{E}\int_{0}^{T}\left\vert \bar{Y}_{s}^{n+1}\right\vert^{2}ds+\frac{1}{16}\mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n}\right\vert^{2}ds+\mathbb{E}\int_{0}^{T}\left\vert f_{s}\left(\omega \right) \right\vert^{2}ds, \notag \hfill\\=\left(24C^{2}+1\right) \mathbb{E}\int_{0}^{T}\left\vert \bar{Y}_{s}^{n+1}\right\vert^{2}ds+\mathbb{E}\int_{0}^{T}\left\vert \bar{Y}_{s}^{n}\right\vert^{2}ds+\frac{1}{16}\mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n}\right\vert^{2}ds+\mathbb{E}\int_{0}^{T}\left\vert f_{s}\left(\omega \right) \right\vert^{2}ds, \notag \hfill} and from hypothesis(H.9) we get 2𝔼0TY¯sn+1E'(π(s,δY¯sn+1,δ(Y¯sn+1)',δZ¯sn+1))ds2𝔼0TY¯sn+1E'(C(|δY¯sn+1|+|(δY¯sn+1)'|+|δZ¯sn+1|))ds,4C𝔼0T|Y¯sn+1|2ds+4C2𝔼0T|Y¯sn+1|2ds+𝔼0T|Y¯sn|2ds+8C2𝔼0T|Y¯sn+1|2ds+18𝔼0T|Z¯sn+1|2ds+16C2𝔼0T|Y¯sn+1|2ds+116𝔼0T|Z¯sn|2ds,=(4C+28C2)𝔼0T|Y¯sn+1|2ds+𝔼0T|Y¯sn|2ds+18𝔼0T|Z¯sn+1|2ds+116𝔼0T|Z¯sn|2ds.\matrix{\quad2\mathbb{E}\int_{0}^{T}\bar{Y}_{s}^{n+1}E^{^{\prime}}\left(\pi \left(s,\delta \bar{Y}_{s}^{n+1},\delta \left(\bar{Y}_{s}^{n+1}\right)^{^{\prime}},\delta \bar{Z}_{s}^{n+1}\right) \right) ds \notag \hfill\\\leq 2\mathbb{E}\int_{0}^{T}\bar{Y}_{s}^{n+1}E^{^{\prime}}\left(C\left(\left\vert \delta \bar{Y}_{s}^{n+1}\right\vert +\left\vert \left(\delta \bar{Y}_{s}^{n+1}\right)^{^{\prime}}\right\vert +\left\vert \delta \bar{Z}_{s}^{n+1}\right\vert \right) \right) ds, \notag \hfill\\\leq 4C\mathbb{E}\int_{0}^{T}\left\vert \bar{Y}_{s}^{n+1}\right\vert^{2}ds+4C^{2}\mathbb{E}\int_{0}^{T}\left\vert \bar{Y}_{s}^{n+1}\right\vert^{2}ds+\mathbb{E}\int_{0}^{T}\left\vert \bar{Y}_{s}^{n}\right\vert^{2}ds+8C^{2}\mathbb{E}\int_{0}^{T}\left\vert \bar{Y}_{s}^{n+1}\right\vert^{2}ds \hfill\\\quad+\frac{1}{8}\mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n+1}\right\vert^{2}ds+16C^{2}\mathbb{E}\int_{0}^{T}\left\vert \bar{Y}_{s}^{n+1}\right\vert^{2}ds+\frac{1}{16}\mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n}\right\vert^{2}ds, \notag \hfill\\=\left(4C+28C^{2}\right) \mathbb{E}\int_{0}^{T}\left\vert \bar{Y}_{s}^{n+1}\right\vert^{2}ds+\mathbb{E}\int_{0}^{T}\left\vert \bar{Y}_{s}^{n}\right\vert^{2}ds+\frac{1}{8}\mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n+1}\right\vert^{2}ds+\frac{1}{16}\mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n}\right\vert^{2}ds. \notag \hfill}

Using the two inequalities (8) and (9), we obtain 2𝔼0TY¯sn+1E'(f(s,Y¯sn,(Y¯sn)',Z¯sn)+π(s,δY¯sn+1,δ(Y¯sn+1)',δZ¯sn+1))ds(52C2+4C+1)𝔼0T|Y¯sn+1|2ds+2𝔼0T|Y¯sn|2ds+18𝔼0T(|Z¯sn+1|2+|Z¯sn|2)ds+𝔼0T|fs(ω)|2ds.\matrix{\hfill\quad2\mathbb{E}\int_{0}^{T}\bar{Y}_{s}^{n+1}E^{^{\prime}}\left(f(s,\bar{Y}_{s}^{n},\left(\bar{Y}_{s}^{n}\right)^{^{\prime}},\bar{Z}_{s}^{n})+\pi\left(s,\delta \bar{Y}_{s}^{n+1},\delta \left(\bar{Y}_{s}^{n+1}\right)^{^{\prime}},\delta \bar{Z}_{s}^{n+1}\right) \right) ds \hfill\\\leq \left(52C^{2}+4C+1\right) \mathbb{E}\int_{0}^{T}\left\vert \bar{Y}_{s}^{n+1}\right\vert^{2}ds+2\mathbb{E}\int_{0}^{T}\left\vert \bar{Y}_{s}^{n}\right\vert^{2}ds \hfill\\+\frac{1}{8}\mathbb{E}\int_{0}^{T}\left(\left\vert \bar{Z}_{s}^{n+1}\right\vert^{2}+\left\vert \bar{Z}_{s}^{n}\right\vert^{2}\right)ds+\mathbb{E}\int_{0}^{T}\left\vert f_{s}\left(\omega \right) \right\vert^{2}ds.\hfill}

Then, we get 𝔼0T|Z¯sn+1|2ds𝔼|ξ|2+𝔼0T||E'(g(s,Y¯sn+1,(Y¯sn+1)',Z¯sn+1))||2ds+C+2𝔼0TY¯sn+1,dK¯sn+1+18𝔼0T(|Z¯sn+1|2+|Z¯sn|2)ds,\matrix{\mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n+1}\right\vert^{2}ds \leq &\mathbb{E}\left\vert \xi \right\vert^{2}+\mathbb{E}\int_{0}^{T}\left\vert\left\vert E^{^{\prime}}\left(g(s,\bar{Y}_{s}^{n+1},\left(\bar{Y}_{s}^{n+1}\right)^{^{\prime}},\bar{Z}_{s}^{n+1})\right) \right\vert\right\vert^{2}ds \hfill\\&+C+2\mathbb{E}\int_{0}^{T}\langle \bar{Y}_{s}^{n+1},d\bar{K}_{s}^{n+1}\rangle +\frac{1}{8}\mathbb{E}\int_{0}^{T}\left(\left\vert \bar{Z}_{s}^{n+1}\right\vert^{2}+\left\vert \bar{Z}_{s}^{n}\right\vert^{2}\right)ds, \hfill} where C=2𝔼0T|Y¯sn|ds+(52C+4C+1)0T|Y¯sn+1|2ds+𝔼0T|fs(ω)|2dsC=2\mathbb{E}\int_{0}^{T}\left\vert \bar{Y}_{s}^{n}\right\vert ds+\left(52C+4C+1\right) \int_{0}^{T}\left\vert \bar{Y}_{s}^{n+1}\right \vert^{2}ds+\mathbb{E}\int_{0}^{T}\left\vert f_{s}\left(\omega \right) \right\vert^{2}ds .

Applying hypothesis (H. 11), we have 𝔼0T||E'(g(s,Y¯sn+1,(Y¯sn+1)',Z¯sn+1))||2ds4C𝔼0T|Y¯sn+1|2ds+2α𝔼0T|Z¯sn+1|2ds+2𝔼0T||g(s,0,0,0)||2ds.\matrix{\quad\hfill\mathbb{E}\int_{0}^{T}\left\vert \left\vert E^{^{\prime}}\left(g(s,\bar{Y}_{s}^{n+1},\left(\bar{Y}_{s}^{n+1}\right)^{^{\prime}},\bar{Z}_{s}^{n+1})\right) \right\vert \right\vert^{2}ds \hfill\\\leq 4C\mathbb{E}\int_{0}^{T}\left\vert \bar{Y}_{s}^{n+1}\right\vert^{2}ds+2\alpha \mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n+1}\right\vert^{2}ds+2\mathbb{E}\int_{0}^{T}\left\vert \left\vert g(s,0,0,0)\right\vert \right\vert^{2}ds. \hfill}

Using Yöung's inequality, we obtain 2𝔼0TY¯sn+1dK¯sn+12𝔼0TSsdK¯sn+11θ𝔼(sup0tT|St|2)+θ𝔼|K¯Tn+1|2.\matrix{2\mathbb{E}\int_{0}^{T}\bar{Y}_{s}^{n+1}d\bar{K}_{s}^{n+1}\leq 2\mathbb{E}\int_{0}^{T}S_{s}d\bar{K}_{s}^{n+1}\leq \frac{1}{\theta}\mathbb{E}\left({\sup}\limits_{0\leq t\leq T}\left\vert S_{t}\right\vert^{2}\right) +\theta \mathbb{E}\left\vert \bar{K}_{T}^{n+1}\right\vert^{2}.}

Therefore, there exists a constant Cθ depending on α, ξ, C and θ, we derive 𝔼0T|Z¯sn+1|2dsCθ+(18+2α)𝔼0T|Z¯sn+1|2ds+18𝔼0T|Z¯sn|2ds+θ𝔼|K¯Tn+1|2,\matrix{\mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n+1}\right\vert^{2}ds\leqC^{\theta}+\left(\frac{1}{8}+2\alpha \right) \mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n+1}\right\vert^{2}ds+\frac{1}{8}\mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n}\right\vert^{2}ds+\theta \mathbb{E}\left\vert \bar{K}_{T}^{n+1}\right\vert^{2},} where Cθ=C+𝔼|ξ|2+4C0T|Y¯sn+1|2ds+1θ𝔼(sup0tT|St|2)+2𝔼0T||g(s,0,0,0)||2dsC^{\theta}=C+\mathbb{E}\left\vert \xi \right\vert^{2}+4C\int_{0}^{T}\left\vert \bar{Y}_{s}^{n+1}\right\vert^{2}ds+\frac{1}{\theta}\mathbb{E}\left({\sup}\limits_{0\leq t\leq T}\left\vert S_{t}\right\vert^{2}\right) +2\mathbb{E}\int_{0}^{T}\left\vert \left\vertg(s,0,0,0)\right\vert \right\vert^{2}ds .

Chossing α such that 0<18+2α<10<\frac{1}{8}+2\alpha <1 , we obtain 𝔼0T|Z¯sn+1|2dsCθ+18𝔼0T|Z¯sn|2ds+θ𝔼|K¯Tn+1|2.\matrix{\mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n+1}\right\vert^{2}ds\leq C^{\theta}+\frac{1}{8}\mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n}\right\vert^{2}ds+\theta \mathbb{E}\left\vert \bar{K}_{T}^{n+1}\right\vert^{2}.}

Moreover, since K¯Tn+1=Y¯0n+1ξ0TE'(f(s,Y¯sn,(Y¯sn)',Z¯sn)+π(s,δY¯sn+1,δ(Y¯sn+1)',δZ¯sn+1))ds0TE'(g(s,Y¯sn+1,(Y¯sn+1)',Z¯sn+1))dBs+tTZ¯sn+1dWs,\matrix{\bar{K}_{T}^{n+1} =&\bar{Y}_{0}^{n+1}-\xi -\int_{0}^{T}E^{^{\prime}}\left(f\left(s,\bar{Y}_{s}^{n},\left(\bar{Y}_{s}^{n}\right)^{^{\prime}},\bar{Z}_{s}^{n}\right) +\pi \left(s,\delta \bar{Y}_{s}^{n+1},\delta \left(\bar{Y}_{s}^{n+1}\right)^{^{\prime}},\delta \bar{Z}_{s}^{n+1}\right) \right) ds \hfill \\&-\int_{0}^{T}E^{^{\prime}}\left(g\left(s,\bar{Y}_{s}^{n+1},\left(\bar{Y}_{s}^{n+1}\right)^{^{\prime}},\bar{Z}_{s}^{n+1}\right) \right) d\overleftarrow{B}_{s}+\int_{t}^{T}\bar{Z}_{s}^{n+1}dW_{s}, \hfill} by the Hölder inequality and B-D-G inequality, 𝔼 (X)2 ≤ 𝔼 (X2) and the properties on f, g, π that there exists two constants C1 and C2 depending on α, ξ and C of n such that 𝔼|K¯Tn+1|2C1+C2(𝔼0T|Z¯sn+1|2+|Z¯sn|2ds).\mathbb{E}\left\vert \bar{K}_{T}^{n+1}\right\vert^{2}\leq C_{1}+C_{2}\left(\mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n+1}\right\vert^{2}+\left\vert \bar{Z}_{s}^{n}\right\vert^{2}ds\right)

Return to inequality (10), we get 𝔼0T|Z¯sn+1|2dsCθ+θC1+(18+θC2)𝔼0T|Z¯sn|2ds+θC2𝔼0T|Z¯sn+1|2ds,\mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n+1}\right\vert^{2}ds\leq C^{\theta}+\theta C_{1}+\left(\frac{1}{8}+\theta C_{2}\right) \mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n}\right\vert^{2}ds+\theta C_{2}\mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n+1}\right\vert^{2}ds, we chosing θ, such that θC2 ≤ 1, we have 𝔼0T|Z¯sn+1|2dsCθ+θC1+(18+θC2)𝔼0T|Z¯sn|2ds(Cθ+θC1)i=0i=n1(18+θC2)i+(18+θC2)n𝔼0T|Z¯s0|2ds.\matrix{\mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n+1}\right\vert^{2}ds & \leq C^{\theta}+\theta C_{1}+\left(\frac{1}{8}+\theta C_{2}\right) \mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n}\right\vert^{2}ds \hfill\\& \leq \left(C^{\theta}+\theta C_{1}\right) \sum_{i=0}^{i=n-1}\left(\frac{1}{8}+\theta C_{2}\right)^{i}+\left(\frac{1}{8}+\theta C_{2}\right)^{n}\mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{0}\right\vert^{2}ds.\hfill}

Now chossing θ such that 18+θC2<1\frac{1}{8}+\theta C_{2}<1 and notting 𝔼0T|Z¯s0|2ds<\mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{0}\right\vert^{2}ds<\infty . Obtain supn𝔼0T|Z¯sn+1|2ds<,\matrix{{\sup}\limits_{n\in \mathbb{N}}\mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n+1}\right\vert^{2}ds<\infty,} consequently, we deduce 𝔼|K¯Tn+1|2<.\mathbb{E}\left\vert \bar{K}_{T}^{n+1}\right\vert^{2}<\infty. Now we shall prove that (Z¯n,K¯n)\left(\bar{Z}^{n},\bar{K}^{n}\right) is a Cauchy sequence in ℳ2 (0, T, ℝd) × 𝒜2.

Applying Itô's formula to |δY˜sn,m|2=|Y˜snY˜sm|2\left\vert \delta \tilde{Y}_{s}^{n,m}\right\vert^{2}=\left\vert \tilde{Y}_{s}^{n}-\tilde{Y}_{s}^{m}\right\vert^{2} , we have 𝔼|Y¯tnY¯tm|2+𝔼0T|Z¯snZ¯sm|2ds=2𝔼0T(Y¯snY¯sm)E'(ΓsnΓsm)ds+20TY¯sn+1(dK¯sndK¯sm)+0T||E'(g(s,Y¯sn,(Y¯sn)',Z¯sn)g(s,Y¯sm,(Y¯sm)',Z¯sm))||2ds.\matrix{\mathbb{E}\left\vert \bar{Y}_{t}^{n}-\bar{Y}_{t}^{m}\right\vert^{2}+\mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n}-\bar{Z}_{s}^{m}\right\vert^{2}ds &=2\mathbb{E}\int_{0}^{T}\left(\bar{Y}_{s}^{n}-\bar{Y}_{s}^{m}\right)E^{^{\prime}}\left(\Gamma_{s}^{n}-\Gamma_{s}^{m}\right) ds+2\int_{0}^{T}\bar{Y}_{s}^{n+1}\left(d\bar{K}_{s}^{n}-d\bar{K}_{s}^{m}\right)\hfill \\ &+\int_{0}^{T}\left\vert \left\vert E^{^{\prime}}\left(g\left(s,\bar{Y}_{s}^{n},\left(\bar{Y}_{s}^{n}\right)^{^{\prime}},\bar{Z}_{s}^{n}\right)-g\left(s,\bar{Y}_{s}^{m},\left(\bar{Y}_{s}^{m}\right)^{^{\prime}},\bar{Z}_{s}^{m}\right) \right) \right\vert \right\vert^{2}ds. \hfill} where Γsn=f(s,Y¯sn1,(Y¯sn1)',Z¯sn1)+π(s,δY¯sn,δ(Y¯sn)',δZ¯sn)\Gamma_{s}^{n}=f(s,\bar{Y}_{s}^{n-1},\left(\bar{Y}_{s}^{n-1}\right)^{^{\prime}},\bar{Z}_{s}^{n-1})+\pi \left(s,\delta \bar{Y}_{s}^{n},\delta\left(\bar{Y}_{s}^{n}\right)^{^{\prime}},\delta \bar{Z}_{s}^{n}\right) . Since 0TY¯sn+1(dK¯sndK¯sm)0\int_{0}^{T}\bar{Y}_{s}^{n+1}\left(d\bar{K}_{s}^{n}-d\bar{K}_{s}^{m}\right) \leq 0 , we obtain 𝔼0T|Z¯snZ¯sm|2ds2𝔼0T(Y¯snY¯sm)E'(ΓsnΓsm)ds+0T||E'(g(s,Y¯sn,(Y¯sn)',Z¯sn)g(s,Y¯sm,(Y¯sm)',Z¯sm))||2ds.\matrix{\mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n}-\bar{Z}_{s}^{m}\right\vert^{2}ds &\leq 2\mathbb{E}\int_{0}^{T}\left(\bar{Y}_{s}^{n}-\bar{Y}_{s}^{m}\right) E^{^{\prime}}\left(\Gamma_{s}^{n}-\Gamma_{s}^{m}\right)ds \hfill \\ &+\int_{0}^{T}\left\vert \left\vert E^{^{\prime}}\left(g\left(s,\bar{Y}_{s}^{n},\left(\bar{Y}_{s}^{n}\right)^{^{\prime}},\bar{Z}_{s}^{n}\right)-g\left(s,\bar{Y}_{s}^{m},\left(\bar{Y}_{s}^{m}\right)^{^{\prime}},\bar{Z}_{s}^{m}\right) \right) \right\vert \right\vert^{2}ds. \hfill}

By the Hölder inequality and hypothesis (H.11), we deduce that (1α)𝔼0T|Z¯snZ¯sm|2ds2𝔼(0T|Y¯snY¯sm|2ds)12𝔼(0T|E'(ΓsnΓsm)|2ds)12+2C𝔼0T|Y¯snY¯sm|2ds.\matrix{\left(1-\alpha \right) \mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n}-\bar{Z}_{s}^{m}\right\vert^{2}ds &\leq 2\mathbb{E}\left(\int_{0}^{T}\left\vert \bar{Y}_{s}^{n}-\bar{Y}_{s}^{m}\right\vert^{2}ds\right)^{\frac{1}{2}}\mathbb{E}\left(\int_{0}^{T}\left\vert E^{^{\prime}}\left(\Gamma_{s}^{n}-\Gamma_{s}^{m}\right) \right\vert^{2}ds\right)^{\frac{1}{2}} \hfill \\&+2C\mathbb{E}\int_{0}^{T}\left\vert \bar{Y}_{s}^{n}-\bar{Y}_{s}^{m}\right\vert^{2}ds.\hfill}

The boundedness of the sequence (Y¯n,Z¯n,K¯n)\left(\bar{Y}^{n},\bar{Z}^{n},\bar{K}^{n}\right) , we deduce that the Λ=supn[𝔼0TE'|Γsn|2ds]<\Lambda ={\sup}_{n\in \mathbb{N}}\left[ \mathbb{E}\int_{0}^{T}E^{^{\prime}}\left\vert \Gamma_{s}^{n}\right\vert^{2}ds\right] <\infty , this yields that (1α)𝔼0T|Z¯snZ¯sm|2ds4Λ𝔼(0T|Y¯snY¯sm|2ds)12+2C𝔼0T|Y¯snY¯sm|2ds,\matrix{\left(1-\alpha \right) \mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n}-\bar{Z}_{s}^{m}\right\vert^{2}ds\leq 4\Lambda \mathbb{E}\left(\int_{0}^{T}\left\vert \bar{Y}_{s}^{n}-\bar{Y}_{s}^{m}\right\vert^{2}ds\right)^{\frac{1}{2}}+2C\mathbb{E}\int_{0}^{T}\left\vert \bar{Y}_{s}^{n}-\bar{Y}_{s}^{m}\right\vert^{2}ds,} which yields that (Z¯n)n0\left(\bar{Z}^{n}\right)_{n\geq 0} is a Cauchy sequence in ℳ2 (0, T, ℝd). Then there exists Z ∈ ℳ2 (ℝd) such that 𝔼0T|Z¯snZs|2ds0asn.\mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n}-Z_{s}\right\vert^{2}ds\rightarrow 0\text{}as\text{}n\rightarrow \infty.

On the other hand, by Burkhölder-Davis-Gundy inequality, we get {𝔼sup0tT|tTZ¯sndWstTZsdWs|2𝔼tT|Z¯snZs|2ds0,asn,𝔼sup0tT|tTE'(g(s,Y¯sn,(Y¯sn)',Z¯sn))E'(g(s,Ys,(Ys)',Zs))|22C𝔼0T|Y¯snYs|2ds+α𝔼0T|Z¯snZs|2ds0,asn.\left\{\matrix{\mathbb{E}{\sup}_{0\leq t\leq T}\left\vert \int_{t}^{T}\bar{Z}_{s}^{n}dW_{s}-\int_{t}^{T}Z_{s}dW_{s}\right\vert^{2}\leq \mathbb{E}\int_{t}^{T}\left\vert \bar{Z}_{s}^{n}-Z_{s}\right\vert^{2}ds\rightarrow 0,\text{}as\text{}n\rightarrow \infty, \\ \mathbb{E}{\sup}_{0\leq t\leq T}\left\vert \int_{t}^{T}E^{^{\prime}}\left(g(s,\bar{Y}_{s}^{n},\left(\bar{Y}_{s}^{n}\right)^{^{\prime}},\bar{Z}_{s}^{n})\right) -E^{^{\prime}}\left(g(s,Y_{s},\left(Y_{s}\right)^{^{\prime}},Z_{s})\right) \right\vert^{2}\hfill \\ \leq 2C\mathbb{E}\int_{0}^{T}\left\vert \bar{Y}_{s}^{n}-Y_{s}\right\vert^{2}ds+\alpha \mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n}-Z_{s}\right\vert^{2}ds\rightarrow 0,\text{}as\text{}n\rightarrow \infty. \hfill}\right.

Therefore, from the properieties of f and πΓsn=f(s,Y¯sn1,(Y¯sn1)',Z¯sn1)+π(s,δY¯sn,δ(Y¯sn)',δZ¯sn)f(s,Ys,(Ys)',Zs),\matrix{\Gamma_{s}^{n}=f(s,\bar{Y}_{s}^{n-1},\left(\bar{Y}_{s}^{n-1}\right)^{^{\prime}},\bar{Z}_{s}^{n-1})+\pi \left(s,\delta \bar{Y}_{s}^{n},\delta\left(\bar{Y}_{s}^{n}\right)^{^{\prime}},\delta \bar{Z}_{s}^{n}\right)\rightarrow f(s,Y_{s},\left(Y_{s}\right)^{^{\prime}},Z_{s}),}

¯\mathbb{\bar{P}}a.s., for all t ∈ [0, T] as n → ∞. Then follows by Lebesgue's dominated convergence theorem that 𝔼0T|E'(Γsnf(s,Ys,(Ys)',Zs))|2ds0,n\mathbb{E}\int_{0}^{T}\left\vert E^{^{\prime}}\left(\Gamma_{s}^{n}-f(s,Y_{s},\left(Y_{s}\right)^{^{\prime}},Z_{s})\right)\right\vert^{2}ds\rightarrow 0,\text{}n\rightarrow \infty

Since (Y˜s,Z˜s,Γsn)\left(\tilde{Y}_{s},\tilde{Z}_{s},\Gamma_{s}^{n}\right) converges in 𝒮2 (0, T, ℝ) × ℳ2 (0, T, ℝd) × ℳ2 (0, T, ℝ2) and 𝔼(sup0tT|K¯tnK¯tm|2)𝔼|Y¯0nY¯0m|2+𝔼sup0tT|Y¯tnY¯tm|2+𝔼0T|E'(ΓsnΓsm)|2ds+𝔼sup0tT|0tE'(g(s,Y¯sn,(Y¯sn)',Z¯sn)g(s,Y¯sm,(Y¯sm)',Z¯sm))dBs|2+𝔼sup0tT|0t(Z¯snZ¯sm)dWs|2\matrix{\mathbb{E}\left({\sup}\limits_{0\leq t\leq T}\left\vert \bar{K}_{t}^{n}-\bar{K}_{t}^{m}\right\vert^{2}\right) \leq &\mathbb{E}\left\vert \bar{Y}_{0}^{n}-\bar{Y}_{0}^{m}\right\vert^{2}+\mathbb{E}{\sup}\limits_{0\leq t\leq T}\left\vert \bar{Y}_{t}^{n}-\bar{Y}_{t}^{m}\right\vert^{2}+\mathbb{E}\int_{0}^{T}\left\vert E^{^{\prime}}\left(\Gamma_{s}^{n}-\Gamma_{s}^{m}\right) \right\vert^{2}ds \hfill\\&+\mathbb{E}{\sup}\limits_{0\leq t\leq T}\left\vert \int_{0}^{t}E^{^{\prime}}\left(g(s,\bar{Y}_{s}^{n},\left(\bar{Y}_{s}^{n}\right)^{^{\prime}},\bar{Z}_{s}^{n})-g(s,\bar{Y}_{s}^{m},\left(\bar{Y}_{s}^{m}\right)^{^{\prime}},\bar{Z}_{s}^{m})\right) d\overleftarrow{B_{s}}\right\vert^{2}\hfill \\&+\mathbb{E}{\sup}\limits_{0\leq t\leq T}\left\vert \int_{0}^{t}\left(\bar{Z}_{s}^{n}-\bar{Z}_{s}^{m}\right) dW_{s}\right\vert^{2}\hfill} for any n ≥ 0, we deduce from Bukhölder-Davis-Gundy inequality that 𝔼(sup0tT|K¯tnK¯tm|2)0,\mathbb{E}\left({\sup}\limits_{0\leq t\leq T}\left\vert \bar{K}_{t}^{n}-\bar{K}_{t}^{m}\right\vert^{2}\right) \rightarrow 0, as n → ∞. Consequently, there exists a t–mesurable process K wich value in ℝ such that 𝔼(sup0tT|K¯tnKt|2)0,\mathbb{E}\left({\sup}\limits_{0\leq t\leq T}\left\vert \bar{K}_{t}^{n}-K_{t}\right\vert^{2}\right) \rightarrow 0, as n → ∞. Obviously, K0 = 0 and {Kt; 0 ≤ tT} is a increasing and continuous process. From Eq. (6), we have for all n ≥ 0, Y¯tnSt\bar{Y}_{t}^{n}\geq S_{t} , ∀t ∈ [0, T], then YtSt, ∀t ∈ [0, T]. On the other hand, from the result of Saisho [8] (in 1987, p. 465), we have 0T(Y¯snSs)dK¯sn0T(YsSs)dKs,\int_{0}^{T}\left(\bar{Y}_{s}^{n}-S_{s}\right) d\bar{K}_{s}^{n}\rightarrow\int_{0}^{T}\left(Y_{s}-S_{s}\right) dK_{s},

¯\mathbb{\bar{P}}a.s., as n → ∞. Using the identite 0T(Y¯snSs)dK¯sn=0\int_{0}^{T}\left(\bar{Y}_{s}^{n}-S_{s}\right) d\bar{K}_{s}^{n}=0 , for all n ≥ 0 we conclude that 0T(YsSs)dKs0\int_{0}^{T}\left(Y_{s}-S_{s}\right) dK_{s}\geq 0 . Letting n → +∞ in Eq. (3), we prove that (Y, Z, K) is solution to Eq. (3). Let (Y*, Z*, K*) be any solution of the MF-RBDSDE (3), we have Y¯nY*\bar{Y}_{\cdot}^{n}\leq Y_{\cdot}^{\ast} , for all n ≥ 0 and therefore, Y. ≤ Y* i.e., Y is the minimal solution.

eISSN:
2444-8656
Lingua:
Inglese
Frequenza di pubblicazione:
Volume Open
Argomenti della rivista:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics