Accesso libero

Deep Learning-Driven International Market Trend Prediction and Trade Strategy Optimization

  
11 apr 2025
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Yang, C. H., Lee, C. F., & Chang, P. Y. (2023). Export-and import-based economic models for predicting global trade using deep learning. Expert Systems with Applications, 218, 119590. https://doi.org/10.1016/j.eswa.2023.119590 Yang C. H. Lee C. F. Chang P. Y. ( 2023 ). Export-and import-based economic models for predicting global trade using deep learning . Expert Systems with Applications , 218 , 119590 . https://doi.org/10.1016/j.eswa.2023.119590 Search in Google Scholar

Sun, S., Wang, S., & Wei, Y. (2020). A new ensemble deep learning approach for exchange rates forecasting and trading. Advanced Engineering Informatics, 46, 101160. https://doi.org/10.1016/j.aei.2020.101160 Sun S. Wang S. Wei Y. ( 2020 ). A new ensemble deep learning approach for exchange rates forecasting and trading . Advanced Engineering Informatics , 46 , 101160 . https://doi.org/10.1016/j.aei.2020.101160 Search in Google Scholar

Gopinath, M., Batarseh, F. A., Beckman, J., Kulkarni, A., & Jeong, S. (2021). International agricultural trade forecasting using machine learning. Data & Policy, 3, e1. https://doi.org/10.1017/dap.2020.22 Gopinath M. Batarseh F. A. Beckman J. Kulkarni A. Jeong S. ( 2021 ). International agricultural trade forecasting using machine learning . Data & Policy , 3 , e1 . https://doi.org/10.1017/dap.2020.22 Search in Google Scholar

Silva, T. C., Wilhelm, P. V. B., & Amancio, D. R. (2024). Machine learning and economic forecasting: The role of international trade networks. Physica A: Statistical Mechanics and Its Applications, 649, 129977. https://doi.org/10.1016/j.physa.2024.129977 Silva T. C. Wilhelm P. V. B. Amancio D. R. ( 2024 ). Machine learning and economic forecasting: The role of international trade networks . Physica A: Statistical Mechanics and Its Applications , 649 , 129977 . https://doi.org/10.1016/j.physa.2024.129977 Search in Google Scholar

Zhao, Y., Liu, L., Wang, A., & Liu, M. (2023). A novel deep learning based forecasting model for carbon emissions trading: A comparative analysis of regional markets. Solar Energy, 262, 111863. https://doi.org/10.1016/j.solener.2023.111863 Zhao Y. Liu L. Wang A. Liu M. ( 2023 ). A novel deep learning based forecasting model for carbon emissions trading: A comparative analysis of regional markets . Solar Energy , 262 , 111863 . https://doi.org/10.1016/j.solener.2023.111863 Search in Google Scholar

Arévalo, A., Niño, J., Hernández, G., & Sandoval, J. (2016, July). High-frequency trading strategy based on deep neural networks. In International Conference on Intelligent Computing (pp. 424–436). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-42297-8_40 Arévalo A. Niño J. Hernández G. Sandoval J. ( 2016 , July ). High-frequency trading strategy based on deep neural networks . In International Conference on Intelligent Computing (pp. 424 436 ). Cham : Springer International Publishing . https://doi.org/10.1007/978-3-319-42297-8_40 Search in Google Scholar

Long, W., Lu, Z., & Cui, L. (2019). Deep learning-based feature engineering for stock price movement prediction. Knowledge-Based Systems, 164, 163–173. https://doi.org/10.1016/j.knosys.2018.10.034 Long W. Lu Z. Cui L. ( 2019 ). Deep learning-based feature engineering for stock price movement prediction . Knowledge-Based Systems , 164 , 163 173 . https://doi.org/10.1016/j.knosys.2018.10.034 Search in Google Scholar

Shaban, W. M., Ashraf, E., & Slama, A. E. (2024). SMP-DL: A novel stock market prediction approach based on deep learning for effective trend forecasting. Neural Computing and Applications, 36(4), 1849–1873. https://doi.org/10.1007/s00521-023-09179-4 Shaban W. M. Ashraf E. Slama A. E. ( 2024 ). SMP-DL: A novel stock market prediction approach based on deep learning for effective trend forecasting . Neural Computing and Applications , 36 ( 4 ), 1849 1873 . https://doi.org/10.1007/s00521-023-09179-4 Search in Google Scholar

Mao, W., Zhu, H., Wu, H., Lu, Y., & Wang, H. (2023). Forecasting and trading credit default swap indices using a deep learning model integrating Merton and LSTMs. Expert Systems with Applications, 213, 119012. https://doi.org/10.1016/j.eswa.2022.119012 Mao W. Zhu H. Wu H. Lu Y. Wang H. ( 2023 ). Forecasting and trading credit default swap indices using a deep learning model integrating Merton and LSTMs . Expert Systems with Applications , 213 , 119012 . https://doi.org/10.1016/j.eswa.2022.119012 Search in Google Scholar

Hafeez, G., Alimgeer, K. S., & Khan, I. (2020). Electric load forecasting based on deep learning and optimized by heuristic algorithm in smart grid. Applied Energy, 269, 114915. https://doi.org/10.1016/j.apenergy.2020.114915 Hafeez G. Alimgeer K. S. Khan I. ( 2020 ). Electric load forecasting based on deep learning and optimized by heuristic algorithm in smart grid . Applied Energy , 269 , 114915 . https://doi.org/10.1016/j.apenergy.2020.114915 Search in Google Scholar

Lin, H., Sun, Q., & Chen, S. Q. (2020). Reducing exchange rate risks in international trade: A hybrid forecasting approach of CEEMDAN and multilayer LSTM. Sustainability, 12(6), 2451. https://doi.org/10.3390/su12062451 Lin H. Sun Q. Chen S. Q. ( 2020 ). Reducing exchange rate risks in international trade: A hybrid forecasting approach of CEEMDAN and multilayer LSTM . Sustainability , 12 ( 6 ), 2451 . https://doi.org/10.3390/su12062451 Search in Google Scholar

Aldhyani, T. H., & Alzahrani, A. (2022). Framework for predicting and modeling stock market prices based on deep learning algorithms. Electronics, 11(19), 3149. https://doi.org/10.3390/electronics11193149 Aldhyani T. H. Alzahrani A. ( 2022 ). Framework for predicting and modeling stock market prices based on deep learning algorithms . Electronics , 11 ( 19 ), 3149 . https://doi.org/10.3390/electronics11193149 Search in Google Scholar

Shamshad, H., Ullah, F., Ullah, A., Kebande, V. R., Ullah, S., & Al-Dhaqm, A. (2023). Forecasting and trading of the stable cryptocurrencies with machine learning and deep learning algorithms for market analytics. IEEE Access. https://doi.org/10.1109/ACCESS.2023.3327440 Shamshad H. Ullah F. Ullah A. Kebande V. R. Ullah S. Al-Dhaqm A. ( 2023 ). Forecasting and trading of the stable cryptocurrencies with machine learning and deep learning algorithms for market analytics . IEEE Access . https://doi.org/10.1109/ACCESS.2023.3327440 Search in Google Scholar

Ma, Y., Wang, W., & Ma, Q. (2023). A novel prediction based portfolio optimization model using deep learning. Computers & Industrial Engineering, 177, 109023. https://doi.org/10.1016/j.cie.2023.109023 Ma Y. Wang W. Ma Q. ( 2023 ). A novel prediction based portfolio optimization model using deep learning . Computers & Industrial Engineering , 177 , 109023 . https://doi.org/10.1016/j.cie.2023.109023 Search in Google Scholar

Rouf, N., Malik, M. B., Arif, T., Sharma, S., Singh, S., Aich, S., & Kim, H. C. (2021). Stock market prediction using machine learning techniques: A decade survey on methodologies, recent developments, and future directions. Electronics, 10(21), 2717. https://doi.org/10.3390/electronics10212717 Rouf N. Malik M. B. Arif T. Sharma S. Singh S. Aich S. Kim H. C. ( 2021 ). Stock market prediction using machine learning techniques: A decade survey on methodologies, recent developments, and future directions . Electronics , 10 ( 21 ), 2717 . https://doi.org/10.3390/electronics10212717 Search in Google Scholar

Chhikara, H., Chhikara, S., & Gupta, L. (2025). Predictive analytics in finance: Leveraging AI and machine learning for investment strategies. In Utilizing AI and Machine Learning in Financial Analysis (pp. 325–336). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-8507-4.ch017 Chhikara H. Chhikara S. Gupta L. ( 2025 ). Predictive analytics in finance: Leveraging AI and machine learning for investment strategies . In Utilizing AI and Machine Learning in Financial Analysis (pp. 325 336 ). IGI Global Scientific Publishing . https://doi.org/10.4018/979-8-3693-8507-4.ch017 Search in Google Scholar

Chen, W., Hussain, W., Cauteruccio, F., & Zhang, X. (2023). Deep learning for financial time series prediction: A state-of-the-art review of standalone and hybrid models. CMES-Computer Modeling in Engineering and Sciences. http://hdl.handle.net/10453/179034 Chen W. Hussain W. Cauteruccio F. Zhang X. ( 2023 ). Deep learning for financial time series prediction: A state-of-the-art review of standalone and hybrid models . CMES-Computer Modeling in Engineering and Sciences . http://hdl.handle.net/10453/179034 Search in Google Scholar

Zhang, Q., Qin, C., Zhang, Y., Bao, F., Zhang, C., & Liu, P. (2022). Transformer-based attention network for stock movement prediction. Expert Systems with Applications, 202, 117239. https://doi.org/10.1016/j.eswa.2022.117239 Zhang Q. Qin C. Zhang Y. Bao F. Zhang C. Liu P. ( 2022 ). Transformer-based attention network for stock movement prediction . Expert Systems with Applications , 202 , 117239 . https://doi.org/10.1016/j.eswa.2022.117239 Search in Google Scholar

Arangi, V., Krishna, S. J. S., Santosh, K., Paliwal, S., Abdurasul, B., & Raj, I. I. (2024, July). Reinforcement learning-optimized trading strategies: A deep Q-network approach for high-frequency finance. In 2024 International Conference on Data Science and Network Security (ICDSNS) (pp. 1–6). IEEE. https://doi.org/10.1109/ICDSNS62112.2024.10691261 Arangi V. Krishna S. J. S. Santosh K. Paliwal S. Abdurasul B. Raj I. I. ( 2024 , July ). Reinforcement learning-optimized trading strategies: A deep Q-network approach for high-frequency finance . In 2024 International Conference on Data Science and Network Security (ICDSNS) (pp. 1 6 ). IEEE . https://doi.org/10.1109/ICDSNS62112.2024.10691261 Search in Google Scholar

Lee, S. I., & Yoo, S. J. (2020). Multimodal deep learning for finance: Integrating and forecasting international stock markets. The Journal of Supercomputing, 76, 8294–8312. https://doi.org/10.1007/s11227-019-03101-3 Lee S. I. Yoo S. J. ( 2020 ). Multimodal deep learning for finance: Integrating and forecasting international stock markets . The Journal of Supercomputing , 76 , 8294 8312 . https://doi.org/10.1007/s11227-019-03101-3 Search in Google Scholar

Venkataramanan, V., Kaza, S., & Annaswamy, A. M. (2022). DER forecast using privacy-preserving federated learning. IEEE Internet of Things Journal, 10(3), 2046–2055. https://doi.org/10.1109/JIOT.2022.3157299 Venkataramanan V. Kaza S. Annaswamy A. M. ( 2022 ). DER forecast using privacy-preserving federated learning . IEEE Internet of Things Journal , 10 ( 3 ), 2046 2055 . https://doi.org/10.1109/JIOT.2022.3157299 Search in Google Scholar

Sellami, B., Ounoughi, C., Kalvet, T., Tiits, M., & Rincon-Yanez, D. (2024). Harnessing graph neural networks to predict international trade flows. Big Data and Cognitive Computing, 8(6), 65. https://doi.org/10.3390/bdcc8060065 Sellami B. Ounoughi C. Kalvet T. Tiits M. Rincon-Yanez D. ( 2024 ). Harnessing graph neural networks to predict international trade flows . Big Data and Cognitive Computing , 8 ( 6 ), 65 . https://doi.org/10.3390/bdcc8060065 Search in Google Scholar

Zhang, S., Chen, Y., Zhang, W., & Feng, R. (2021). A novel ensemble deep learning model with dynamic error correction and multi-objective ensemble pruning for time series forecasting. Information Sciences, 544, 427–445. https://doi.org/10.1016/j.ins.2020.08.053 Zhang S. Chen Y. Zhang W. Feng R. ( 2021 ). A novel ensemble deep learning model with dynamic error correction and multi-objective ensemble pruning for time series forecasting . Information Sciences , 544 , 427 445 . https://doi.org/10.1016/j.ins.2020.08.053 Search in Google Scholar

Demir, S., Mincev, K., Kok, K., & Paterakis, N. G. (2021). Data augmentation for time series regression: Applying transformations, autoencoders and adversarial networks to electricity price forecasting. Applied Energy, 304, 117695. https://doi.org/10.1016/j.apenergy.2021.117695 Demir S. Mincev K. Kok K. Paterakis N. G. ( 2021 ). Data augmentation for time series regression: Applying transformations, autoencoders and adversarial networks to electricity price forecasting . Applied Energy , 304 , 117695 . https://doi.org/10.1016/j.apenergy.2021.117695 Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
1 volte all'anno
Argomenti della rivista:
Scienze biologiche, Scienze della vita, altro, Matematica, Matematica applicata, Matematica generale, Fisica, Fisica, altro