Accesso libero

Design and Implementation of a Computational Model for the Enhancement of College Students’ Independent Learning Ability Supported by Big Data

  
21 mar 2025
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Figure 1.

The college students’ self-learning index hierarchy
The college students’ self-learning index hierarchy

Figure 2.

The college students’ self-learning ability prediction algorithm process
The college students’ self-learning ability prediction algorithm process

Figure 3.

The model’s self-learning ability and the prediction accuracy
The model’s self-learning ability and the prediction accuracy

Figure 4.

The autonomic learning ability of the model and the prediction error
The autonomic learning ability of the model and the prediction error

Figure 5.

Model fitting precision and prediction accuracy contrast
Model fitting precision and prediction accuracy contrast

Figure 6.

Comparison of the prediction efficiency of autonomous learning ability
Comparison of the prediction efficiency of autonomous learning ability

Figure 7.

Evaluation of independent learning ability of the experimental group
Evaluation of independent learning ability of the experimental group

Figure 8.

Control group autonomous learning ability level evaluation
Control group autonomous learning ability level evaluation

The analysis of the difference between the motivation and the motivation

Dimension content Pretest-Posttest N Mean SD T P
SE Pretest 40 2.774 0.486 -2.145 0.000
Posttest 40 3.133 0.246
IG Pretest 40 2.094 0.176 -3.425 0.000
Posttest 40 4.475 0.455
LC Pretest 40 2.027 0.173 -4.124 0.002
Posttest 40 4.292 0.327
LSM Pretest 40 2.051 0.088 -2.442 0.001
Posttest 40 4.082 0.371
LEG Pretest 40 2.857 0.182 -3.124 0.000
Posttest 40 3.035 0.411
LA Pretest 40 2.655 0.298 -1.454 0.003
Posttest 40 3.647 0.24

Analysis of differential survey of learning strategies

Dimension content Pretest-Posttest N Mean SD T P
General Approach Pretest 40 2.032 0.459 -3.142 0.000
Posttest 40 3.749 0.43
LH Pretest 40 2.008 0.003 -3.104 0.002
Posttest 40 3.054 0.334
LP Pretest 40 2.987 0.194 -3.242 0.000
Posttest 40 4.482 0.424
LS Pretest 40 2.317 0.029 -2.024 0.004
Posttest 40 4.283 0.024
LE Pretest 40 2.309 0.082 -3.114 0.003
Posttest 40 3.523 0.411
LM Pretest 40 2.103 0.48 -1.324 0.000
Posttest 40 3.845 0.095

Test data statistics

College type Key university First batch universities Second batch universities Independent college Vocational school
Test data quantity 1500 2600 4700 1100 4500
Lingua:
Inglese
Frequenza di pubblicazione:
1 volte all'anno
Argomenti della rivista:
Scienze biologiche, Scienze della vita, altro, Matematica, Matematica applicata, Matematica generale, Fisica, Fisica, altro