Study on the accuracy and stability of distributed photovoltaic customer load forecasting based on hybrid modeling
, , , e
19 mar 2025
INFORMAZIONI SU QUESTO ARTICOLO
Pubblicato online: 19 mar 2025
Ricevuto: 17 ott 2024
Accettato: 10 feb 2025
DOI: https://doi.org/10.2478/amns-2025-0536
Parole chiave
© 2025 Hongtao Shen et al., published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

CNN-LSTM model parameter
CNN-LSTM | Parameter | Estimate | SE | t | Sig. |
Constant | -5.182 | 0.612 | -6.438 | 0.000 | |
CNN lag 1 | 0.540 | 0.055 | 7.030 | 0.000 | |
Seasonal difference | 1 | ||||
LSTM seasonal lag 1 | 0.885 | 0.054 | 6.661 | 0.000 |
The voltage stability indicator for the power grid of different capacity
Fan capacity(kW) | 0 | 50 | 100 | 150 | 200 | 250 |
---|---|---|---|---|---|---|
Voltage stability indicator | 0.1338 | 0.1231 | 0.1162 | 0.1199 | 0.1068 | 0.1035 |