This work is licensed under the Creative Commons Attribution 4.0 International License.
Yassen, A., Awad, F., Elsadig, F., Mohammed, S., Yagoub, K., Omer, A., & Omer, S. (2023, June). Development of a universal medical phantom for quality control of X-ray equipment. In AIP Conference Proceedings (Vol. 2820, No. 1). AIP Publishing.Search in Google Scholar
Smith-Bindman, R., Kwan, M. L., Marlow, E. C., Theis, M. K., Bolch, W., Cheng, S. Y., ... & Miglioretti, D. L. (2019). Trends in use of medical imaging in US health care systems and in Ontario, Canada, 2000-2016. Jama, 322(9), 843-856.Search in Google Scholar
Castiglioni, I., Rundo, L., Codari, M., Di Leo, G., Salvatore, C., Interlenghi, M., ... & Sardanelli, F. (2021). AI applications to medical images: From machine learning to deep learning. Physica medica, 83, 9-24.Search in Google Scholar
Nie, D., Trullo, R., Lian, J., Wang, L., Petitjean, C., Ruan, S., ... & Shen, D. (2018). Medical image synthesis with deep convolutional adversarial networks. IEEE Transactions on Biomedical Engineering, 65(12), 2720-2730.Search in Google Scholar
Nie, D., Trullo, R., Lian, J., Petitjean, C., Ruan, S., Wang, Q., & Shen, D. (2017). Medical image synthesis with context-aware generative adversarial networks. In Medical Image Computing and Computer Assisted Intervention− MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III 20 (pp. 417-425). Springer International Publishing.Search in Google Scholar
Zhu, H., Zou, K., Li, Y., Cen, M., & Mihaylova, L. (2019). Robust non-rigid feature matching for image registration using geometry preserving. Sensors, 19(12), 2729.Search in Google Scholar
Xu, J., Tao, M., Zhang, S., Jiang, X., & Tan, J. (2021). Non-rigid registration of biomedical image for radiotherapy based on adaptive feature density flow. Biomedical Signal Processing and Control, 68, 102691.Search in Google Scholar
Baum, Z. M., Ungi, T., Schlenger, C., Hu, Y., & Barratt, D. C. (2022, September). Learning Generalized Non-rigid Multimodal Biomedical Image Registration from Generic Point Set Data. In International Workshop on Advances in Simplifying Medical Ultrasound (pp. 141-151). Cham: Springer International Publishing.Search in Google Scholar
Ghoul, A., Pan, J., Lingg, A., Kübler, J., Krumm, P., Hammernik, K., ... & Küstner, T. (2024). Attention-aware non-rigid image registration for accelerated MR imaging. IEEE Transactions on Medical Imaging.Search in Google Scholar
Zhu, X., Huang, Z., Ding, M., & Zhang, X. (2022). Non-rigid multi-modal brain image registration based on two-stage generative adversarial nets. Neurocomputing, 505, 44-57.Search in Google Scholar
Zhang, J., Zhao, S. F., Jiang, Y. F., Pan, Z. F., Lu, Z. T., Feng, Q. J., & Chen, W. F. (2018). Non-rigid image registration by minimizing weighted residual complexity. Current Medical Imaging, 14(2), 334-346.Search in Google Scholar
Ferreira, D. P. L., Ribeiro, E., & Barcelos, C. A. Z. (2018). A variational approach to non-rigid image registration with bregman divergences and multiple features. Pattern Recognition, 77, 237-247.Search in Google Scholar
Yang, Z., Yang, Y., Yang, K., & Wei, Z. Q. (2018). Non-rigid image registration with dynamic Gaussian component density and space curvature preservation. IEEE Transactions on Image Processing, 28(5), 2584-2598.Search in Google Scholar
Bhosale, P., Staring, M., Al-Ars, Z., & Berendsen, F. F. (2018, March). GPU-based stochastic-gradient optimization for non-rigid medical image registration in time-critical applications. In Medical Imaging 2018: Image Processing (Vol. 10574, pp. 185-191). SPIE.Search in Google Scholar
Zhang, S., & Zhi, L. (2017, December). Research of non-rigid medical image registration based on gradient information. In 2017 10th International Symposium on Computational Intelligence and Design (ISCID) (Vol. 2, pp. 423-426). IEEE.Search in Google Scholar
Borovec, J., Kybic, J., Arganda-Carreras, I., Sorokin, D. V., Bueno, G., Khvostikov, A. V., ... & Muñoz-Barrutia, A. (2020). ANHIR: automatic non-rigid histological image registration challenge. IEEE transactions on medical imaging, 39(10), 3042-3052.Search in Google Scholar
Mohanty, S., & Dakua, S. P. (2022). Toward computing cross-modality symmetric non-rigid medical image registration. IEEE Access, 10, 24528-24539.Search in Google Scholar
Shi, J., Wan, P., & Chen, F. (2021, November). An unsupervised non-rigid registration network for fast medical shape alignment. In 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (pp. 1887-1890). IEEE.Search in Google Scholar
Lan, S., Guo, Z., & You, J. (2019). Non-rigid medical image registration using image field in Demons algorithm. Pattern Recognition Letters, 125, 98-104.Search in Google Scholar
Chakraborty, S., Pradhan, R., Samanta, S., & Ashour, A. S. (2021). Optimization of non-rigid Demons registration using flower pollination algorithm. Applications of Flower Pollination Algorithm and its Variants, 25-44.Search in Google Scholar
Papież, B. W., Franklin, J. M., Heinrich, M. P., Gleeson, F. V., Brady, M., & Schnabel, J. A. (2018). GIFTed Demons: deformable image registration with local structure-preserving regularization using supervoxels for liver applications. Journal of Medical Imaging, 5(2), 024001-024001.Search in Google Scholar
Sheng Lan,Zhenhua Guo & Jane You. (2019). Non-rigid medical image registration using image field in Demons algorithm. Pattern Recognition Letters98-104.Search in Google Scholar
Wenjun Huangfu,Cui Ni,Peng Wang & Yingying Zhang. (2024). A robust feature matching algorithm based on adaptive feature fusion combined with image superresolution reconstruction. Applied Intelligence(17-18),8576-8591.Search in Google Scholar
Reese E. Jones,Craig M. Hamel,Dan Bolintineanu,Kyle Johnson,Robert Buarque de Macedo,Jan Fuhg... & Sharlotte Kramer. (2024). Multiscale simulation of spatially correlated microstructure via a latent space representation. International Journal of Solids and Structures112966-112966.Search in Google Scholar
Caicheng Zhu,Xin Zhao,Xinlei He & Zhili Tang. (2024). Hybrid Optimization Method Based on Coupling Local Gradient Information and Global Evolution Mechanism. Mathematics(8).Search in Google Scholar