This work is licensed under the Creative Commons Attribution 4.0 International License.
Fuć, P., Lijewski, M., Siedlecki, B., et al. (2018). Analysis of particle mass and number emission from an SI engine with direct fuel injection and a particulate filter. IOP Conference Series: Materials Science and Engineering, 421(4), 042019. DOI:10.1088/1757-899X/421/4/042019.Search in Google Scholar
Yao, S., Wang, K., Zhang, X. Y., et al. (2021). Simulation. Study on the Regeneration Equilibrium State of Gasoline Particulate Filters. Chinese Internal Combustion Engine Engineering, 42(03), 93-99. DOI:10.13949/j.cnki.nrjgc.2021.03.014.Search in Google Scholar
Yin, Z. L., Ma, Z. H., Du, W. X., et al. (2019). Application of Metal Type Gasoline Particle Filter to the Gasoline Direct Injection Engine Test. Journal of Henan University of Science and Technology (Natural Science), 40(06), 32-36+43+6. DOI:10.15926/j.cnki.issn1672-6871.2019.06.006.Search in Google Scholar
Zhang, Y. K., Li Z. J., Shuai S. J., et al. (2020). Simulation of Deep-bed Filtration of Gasoline Particulate Filters With Inhomogeneous Wall Structure. Journal of Engineering Thermophysics, 41(07), 1828-1836.Search in Google Scholar
Viswanathan, S., Rothamer, D. A., Foster D. E., et al. (2017). Evolution of deep-bed filtration of engine exhaust particulates with trapped mass. International Journal of Engine Research, 18(5-6), 543-559. DOI:10.1177/1468087416675094.Search in Google Scholar
Viswanathan, S., Rothamer, D., Zelenyuk, A., et al. (2017). Experimental investigation of the effect of inlet particle properties on the capture efficiency in an exhaust particulate filter. Journal of Aerosol Science, 113, 250-264. DOI:10.1016/j.jaerosci.2017.08.002.Search in Google Scholar
Yang, Y., Rutland, C., Rothamer, D. (2018). Study of the deep-bed filtration using pore filtration model (pfm). SAE International Journal of Fuels and Lubricants, 11(4), 287-299. DOI:10.4271/2018-01-0956.Search in Google Scholar
Gong, J., Rutland, C. J. (2015). Pdf-based heterogeneous multiscale filtration model. Environmental Science & Technology, 49(8), 4963-4970. DOI:10.1021/acs.est.5b00329.Search in Google Scholar
Gong, J., Viswanathan, S., Rothamer, D. A., et al. (2017). Dynamic heterogeneous multiscale filtration model: Probing micro and macroscopic filtration characteristics of gasoline particulate filters. Environmental Science & Technology, 51(19), 11196-11204. DOI:10.1021/acs.est.7b02535.Search in Google Scholar
Gong, J., Stewart, M. L., Zelenyuk, A., et al. (2018). Importance of filter’s microstructure in dynamic filtration modeling of gasoline particulate filters (GPFs): Inhomogeneous porosity and pore size distribution. Chemical Engineering Journal, 338, 15-26. DOI:10.1016/j.cej.2018.01.006.Search in Google Scholar
Brillant Steven, Zikoridse Gennadi. (2005). Metal fibre diesel particulate filter: function and technology. SAE International, 2005-01-0580.Search in Google Scholar
Zhang, J., Fu, H., Zhao, H., et al. (2015). Fractal model of pressure loss in two-dimensional randomly distributed fiber filtration media. Journal of Donghua University (Natural Science Edition), 41(06), 829-833. DOI: 10.3969/j.issn.1671-0444.2015.06.017.Search in Google Scholar
Shen, Y. G., Lv, Y., Peng, Y. Y., et al. (2021). Analysis of key issues in the engineering application of national six diesel engine particulate traps. Journal of Automotive Engineering, 11(01), 34-46. DOI: 10.3969/j.issn.2095-1469.2021.01.05.Search in Google Scholar
Zhang Z. D., Liang, X. Y., Wang, Y. J., et al. (2020). Experimental study on the deposition characteristics of particulate matter in metal foam-type particle traps. Journal of Xi’an Jiaotong University, 54(07), 75-83. DOI: 10.7652/xjtuxb202007010.Search in Google Scholar
Sanui R., Hanamura K. (2016). Electron microscopic time-lapse visualization of surface pore filtration nonparticulate matter trapping process. Journal of Microscopy, 263(3), 250-259. DOI:10.1111/jmi.12386.Search in Google Scholar
Merkel, G. A., Beall, D. M., Hickman, D. L., et al. (2001). Effects of microstructure and cell geometry on performance of cordierite diesel particulate filters. SAE Technical Paper, 2001-01-0193, DOI:10.4271/2001-01-0193.Search in Google Scholar
Zhang, X., Ma, J., Nie, X., et al. (2023). Establishment of air fiber filtration model based on fractal theory and analysis of filtration performances. Materials Today Communications, 34, 105301. DOI: 0.1016/j.mtcomm.2022.105301.Search in Google Scholar
Li, Y., Fu, H. M., Zhang, J. (2012). Porosity of fiber filter media and its fractal dimension. Building Thermal Ventilation and Air Conditioning, 31(04), 18-21+30. DOI: .3969/j.issn.1003-0344.2012.04.006.Search in Google Scholar
Li, Z. J., Shen, B. X., Zhang, Y. K., et al. (2021). Simulation of deep-bed filtration of a gasoline particulate filter with inhomogeneous wall structure under different particle size distributions. International Journal of Engine Research, 22(7), 1-12. DOI:10.1177/1468087421992216.Search in Google Scholar
Cardozo, R. N. (1965). An Experimental Study of Customer Effort, Expectation, and Satisfaction. Journal of Marketing Research, 2(3), 144-149. DOI:10.1177/002224376500200303.Search in Google Scholar
Seong H., Lee, K., Choi, S. (2013). Effects of engine operating parameters on morphology of particulates from a gasoline direct injection (GDI) engine. In SAE Technical Paper, 2013-01-2574. DOI: 10.4271/2013-01-2574.Search in Google Scholar
Saffaripour M., Chan T. W., Liu F. S., et al. (2015). Effect of drive cycle and gasoline particulate filter on the size and morphology of soot particles emitted from a gasoline-direct-injection vehicle. Environmental Science & Technology, 49(19), 11950-11958. DOI:10.1021/acs.est.5b02185.Search in Google Scholar
Bogarra, M., Herreros, J., Tsolakis, A., et al. (2017). Impact of Exhaust Gas Fuel Reforming and Exhaust Gas Recirculation on Particulate Matter Morphology in Gasoline Direct Injection Engine. Journal of Aerosol Science, 103, 1-14. DOI:10.1016/j.jaerosci.2016.10.001.Search in Google Scholar
Jiang, X. H., Tan, J. W., Xu, C. J., et al. (2022). Research on Particle Emission Characteristics of Direct Injection Gasoline Vehicles Based on the Particle Size Distribution. Automotive Engineering, 44(10),1609-1618. DOI: 10.19562/j.chinasae.qcgc.2022.10.016.Search in Google Scholar
Hu, Z.Y., Zhao, X.Y., Xia, X.C., et al. (2020). Emission Characteristics and Microscopic Morphology of Particles from a Gasoline Direct Injection Vehicle based on China Ⅵ Emission Regulation. Journal of Tongji University (Natural Science), 48(02), 241-24. DOI: 10.11908/j.issn.0253-374x.19166.Search in Google Scholar