Accesso libero

Study on the Application of Improved Deep Convolutional Neural Network Algorithm in Broken Information Recovery

  
26 feb 2024
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Matsuo, Y., Kimura, T., & Nishimatsu, K. (2021). Deepsip: a system for predicting service impact of network failure by temporal multimodal cnn. IEICE Transactions on Communications(10). Search in Google Scholar

Ding, G., Liu, Y., Zhang, R., & Xin, H. L. (2019). A joint deep learning model to recover information and reduce artifacts in missing-wedge sinograms for electron tomography and beyond. Scientific Reports, 9(1), 1-13. Search in Google Scholar

Choi, Y. R., & Kil, R. M. (2021). Face video retrieval based on the deep cnn with rbf loss. IEEE Transactions on Image Processing, 30, 1015-1029. Search in Google Scholar

Bhaskaran, S. K., Sreejith, C., & Rafeeque, P. C. (2018). Neural networks and conditional random fields based approach for effective question processing. Procedia Computer Science. Search in Google Scholar

Khan, A., Sohail, A., Zahoora, U., & Qureshi, A. S. (2019). A survey of the recent architectures of deep convolutional neural networks. Artificial Intelligence Review(1-87). Search in Google Scholar

Yan, B., & Sinitsyn, N. A. (2020). Recovery of damaged information and the out-of-time-ordered correlators. Physical Review Letters. Search in Google Scholar

Li, F., Bai, H., & Zhao, Y. (2019). Detail-preserving image super-resolution via recursively dilated residual network. Neurocomputing, 358(SEP.17), 285-293. Search in Google Scholar

Lei, J., & Lei, Z. (2011). The Chaotic Cipher Based on CNNs and Its Application in Network. Information Processing and Trusted Computing. IEEE. Search in Google Scholar

Jinjiang, L., Guihui, L., & Hui, F. (2018). Image dehazing using residual-based deep cnn. IEEE Access, PP, 1-1. Search in Google Scholar

Eilertsen, G., Kronander, J., Denes, G., Mantiuk, R. K., & Unger, J. (2017). Hdr image reconstruction from a single exposure using deep cnns. Acm Transactions on Graphics, 36(6). Search in Google Scholar

Maltezos, E., Doulamis, N., Doulamis, A., & Ioannidis, C. (2017). Deep convolutional neural networks for building extraction from orthoimages and dense image matching point clouds. Journal of Applied Remote Sensing, 11(4), 042620-1-042620-22. Search in Google Scholar

Liu, YisenZhou, SongbinHan, WeiLi, ChangLiu, WeixinQiu, Zefan. (2019). Hyperspectral classification using deep fusion spectral-spatial features. Journal of Applied Remote Sensing, 13(3). Search in Google Scholar

Passah, A., Amitab, K., & Kandar, D. (2021). Sar image despeckling using deep cnn. IET Image Processing, 15. Search in Google Scholar

Jiao, L., Wu, H., Wang, H., & Bie, R. (2018). Text recovery via deep cnn-bilstm recognition and bayesian inference. IEEE Access, 1-1. Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
1 volte all'anno
Argomenti della rivista:
Scienze biologiche, Scienze della vita, altro, Matematica, Matematica applicata, Matematica generale, Fisica, Fisica, altro