Accesso libero

An Lmi–Based Heuristic Algorithm for Vertex Reduction in LPV Systems

International Journal of Applied Mathematics and Computer Science's Cover Image
International Journal of Applied Mathematics and Computer Science
New Perspectives in Nonlinear and Intelligent Control (In Honor of Alexander P. Kurdyukov) (special section, pp. 629-712), Julio B. Clempner, Enso Ikonen, Alexander P. Kurdyukov (Eds.)
INFORMAZIONI SU QUESTO ARTICOLO

Cita

Apkarian, P., Gahinet, P. and Becker, G. (1995). Self-scheduled ℋ control of linear parameter-varying systems: A design example, Automatica31(9): 1251–1261.10.1016/0005-1098(95)00038-XSearch in Google Scholar

Apkarian, P. and Tuan, H.D. (2000). Parameterized LMIs in control theory, SIAM Journal on Control and Optimization38(4): 1241–1264.10.1137/S036301299732612XSearch in Google Scholar

Boyd, S., El Ghaoui, L., Feron, E. and Balakrishnan, V. (1994). Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, PA.10.1137/1.9781611970777Search in Google Scholar

Chilali, M. and Gahinet, P. (1996). ℋ design with pole placement constraints: An LMI approach, IEEE Transactions on Automatic Control41(3): 358–367.10.1109/9.486637Search in Google Scholar

Chitraganti, S., Tóth, R., Meskin, N. and Mohammadpour, J. (2017). Stochastic model predictive tracking of piecewise constant references for LPV systems, IET Control Theory & Applications11(12): 1862–1872.10.1049/iet-cta.2016.0629Search in Google Scholar

Curran, P.F. (2009). On a variation of the Gershgorin circle theorem with applications to stability theory, IET Irish Signals and Systems Conference (ISSC 2009), Dublin, Ireland, pp. 1–5.Search in Google Scholar

El-Sakkary, A. (1985). The gap metric: Robustness of stabilization of feedback systems, IEEE Transactions on Automatic Control30(3): 240–247.10.1109/TAC.1985.1103926Search in Google Scholar

Fergani, S., Menhour, L., Sename, O., Dugard, L. and D’Andréa-Novel, B. (2017). Integrated vehicle control through the coordination of longitudinal/lateral and vertical dynamics controllers: Flatness and LPV/ℋ-based design, International Journal of Robust and Nonlinear Control27(18): 4992–5007.10.1002/rnc.3846Search in Google Scholar

Fleischmann, S., Theodoulis, S., Laroche, E., Wallner, E. and Harcaut, J.-P. (2016). A systematic LPV/LFR modelling approach optimized for linearised gain scheduling control synthesis, AIAA Modeling and Simulation Technologies Conference, San Diego, CA, USA, p. 1921.Search in Google Scholar

Gahinet, P., Apkarian, P. and Chilali, M. (1996). Affine parameter-dependent Lyapunov functions and real parametric uncertainty, IEEE Transactions on Automatic Control41(3): 436–442.10.1109/9.486646Search in Google Scholar

Ho, W.K., Lee, T.H., Xu, W., Zhou, J.R. and Tay, E.B. (2000). The direct Nyquist array design of PID controllers, IEEE Transactions on Industrial Electronics47(1): 175–185.10.1109/41.824140Search in Google Scholar

Hoffmann, C. and Werner, H. (2015). A survey of linear parameter-varying control applications validated by experiments or high-fidelity simulations, IEEE Transactions on Control Systems Technology23(2): 416–433.10.1109/TCST.2014.2327584Search in Google Scholar

Inthamoussou, F.A., Bianchi, F.D., De Battista, H. and Mantz, R.J. (2014). LPV wind turbine control with anti-windup features covering the complete wind speed range, IEEE Transactions on Energy Conversion29(1): 259–266.10.1109/TEC.2013.2294212Search in Google Scholar

Jabali, M. B.A. and Kazemi, M.H. (2017). A new LPV modeling approach using PCA-based parameter set mapping to design a PSS, Journal of Advanced Research8(1): 23–32.10.1016/j.jare.2016.10.006Search in Google Scholar

Kwiatkowski, A., Boll, M.-T. and Werner, H. (2006). Automated generation and assessment of affine LPV models, 45th IEEE Conference on Decision and Control, San Diego, CA, USA, pp. 6690–6695.Search in Google Scholar

Kwiatkowski, A. and Werner, H. (2008). PCA-based parameter set mappings for LPV models with fewer parameters and less overbounding, IEEE Transactions on Control Systems Technology16(4): 781–788.10.1109/TCST.2007.903094Search in Google Scholar

Lofberg, J. (2004). YALMIP: A toolbox for modeling and optimization in MATLAB, IEEE International Symposium on Computer Aided Control Systems Design, New Orleans, LA, USA, pp. 284–289.Search in Google Scholar

López-Estrada, F.-R., Ponsart, J.-C., Astorga-Zaragoza, C.-M., Camas-Anzueto, J.-L. and Theilliol, D. (2015). Robust sensor fault estimation for descriptor-LPV systems with unmeasurable gain scheduling functions: Application to an anaerobic bioreactor, International Journal of Applied Mathematics and Computer Science25(2): 233–244, DOI: 10.1515/amcs-2015-0018.10.1515/amcs-2015-0018Open DOISearch in Google Scholar

Luspay, T., Péni, T., Gőzse, I., Szabó, Z. and Vanek, B. (2018). Model reduction for LPV systems based on approximate modal decomposition, International Journal for Numerical Methods in Engineering113(6): 891–909.10.1002/nme.5692Search in Google Scholar

Marcos, A. and Balas, G.J. (2004). Development of linear-parameter-varying models for aircraft, Journal of Guidance, Control, and Dynamics27(2): 218–228.10.2514/1.9165Search in Google Scholar

Mohammadpour, J. and Scherer, C.W. (2012). Control of Linear Parameter Varying Systems with Applications, Springer, New York, NY.10.1007/978-1-4614-1833-7Search in Google Scholar

Montagner, V., Oliveira, R., Leite, V.J. and Peres, P.L.D. (2005). LMI approach for ℋ linear parameter-varying state feedback control, IEE Proceedings: Control Theory and Applications152(2): 195–201.10.1049/ip-cta:20045117Search in Google Scholar

Nguyen, A.-T., Chevrel, P. and Claveau, F. (2018). Gain-scheduled static output feedback control for saturated LPV systems with bounded parameter variations, Automatica89: 420–424.10.1016/j.automatica.2017.12.027Search in Google Scholar

Packard, A. (1994). Gain scheduling via linear fractional transformations, Systems & Control Letters22(2): 79–92.10.1016/0167-6911(94)90102-3Search in Google Scholar

Pemmaraju, S. and Skiena, S. (2003). Computational Discrete Mathematics: Combinatorics and Graph Theory with Mathematica, Cambridge University Press, New York, NY.10.1017/CBO9781139164849Search in Google Scholar

Quarteroni, A., Sacco, R. and Saleri, F. (2010). Numerical Mathematics, Vol. 37, Springer Science & Business Media, New York, NY.Search in Google Scholar

Rahideh, A. and Shaheed, M. (2007). Mathematical dynamic modelling of a twin-rotor multiple input-multiple output system, Proceedings of the Institution of Mechanical Engineers I: Journal of Systems and Control Engineering221(1): 89–101.10.1243/09596518JSCE292Search in Google Scholar

Rizvi, S. Z., Mohammadpour, J., Tóth, R. and Meskin, N. (2016). A kernel-based PCA approach to model reduction of linear parameter-varying systems, IEEE Transactions on Control Systems Technology24(5): 1883–1891.10.1109/TCST.2016.2517126Search in Google Scholar

Rotondo, D. (2017). Advances in Gain-Scheduling and Fault Tolerant Control Techniques, Springer, Cham.10.1007/978-3-319-62902-5Search in Google Scholar

Rotondo, D., Nejjari, F. and Puig, V. (2013). Quasi-LPV modeling, identification and control of a twin rotor MIMO system, Control Engineering Practice21(6): 829–846.10.1016/j.conengprac.2013.02.004Search in Google Scholar

Rotondo, D., Nejjari, F. and Puig, V. (2014). Robust state-feedback control of uncertain LPV systems: An LMI-based approach, Journal of the Franklin Institute351(5): 2781–2803.10.1016/j.jfranklin.2014.01.018Search in Google Scholar

Rotondo, D., Puig, V., Nejjari, F. and Romera, J. (2015a). A fault-hiding approach for the switching quasi-LPV fault-tolerant control of a four-wheeled omnidirectional mobile robot, IEEE Transactions on Industrial Electronics62(6): 3932–3944.10.1109/TIE.2014.2367002Search in Google Scholar

Rotondo, D., Puig, V., Nejjari, F. and Witczak, M. (2015b). Automated generation and comparison of Takagi–Sugeno and polytopic quasi-LPV models, Fuzzy Sets and Systems27(C): 44–64.10.1016/j.fss.2015.02.002Search in Google Scholar

Rugh, W.J. and Shamma, J.S. (2000). Research on gain scheduling, Automatica36(10): 1401–1425.10.1016/S0005-1098(00)00058-3Search in Google Scholar

Sturm, J.F. (1999). Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones, Optimization Methods and Software11(1–4): 625–653.Search in Google Scholar

Sun, X.-D. and Postlethwaite, I. (1998). Affine LPV modelling and its use in gain-scheduled helicopter control, UKACC International Conference on Control ‘98, Swansea, UK, Vol. 2, pp. 1504–1509.Search in Google Scholar

Theis, J., Seiler, P. and Werner, H. (2017). LPV model order reduction by parameter-varying oblique projection, IEEE Transactions on Control Systems Technology26(3): 773–784.10.1109/TCST.2017.2692744Search in Google Scholar

Theodoulis, S. and Duc, G. (2009). Missile autopilot design: Gain-scheduling and the gap metric, Journal of Guidance, Control, and Dynamics32(3): 986–996.10.2514/1.34756Search in Google Scholar

Tseng, C.-S., Chen, B.-S. and Uang, H.-J. (2001). Fuzzy tracking control design for nonlinear dynamic systems via TS fuzzy model, IEEE Transactions on Fuzzy Systems9(3): 381–392.10.1109/91.928735Search in Google Scholar

Vinnicombe, G. (1996). The robustness of feedback systems with bounded complexity controllers, IEEE Transactions on Automatic Control41(6): 795–803.10.1109/9.506232Search in Google Scholar

White, A.P., Zhu, G. and Choi, J. (2013). Linear Parameter-Varying Control for Engineering Applications, Springer, London.10.1007/978-1-4471-5040-4Search in Google Scholar

Zhao, P. and Nagamune, R. (2017). Switching LPV controller design under uncertain scheduling parameters, Automatica76: 243–250.10.1016/j.automatica.2016.10.026Search in Google Scholar

Zhou, M., Rodrigues, M., Shen, Y. and Theilliol, D. (2018). ℋ _/ℋ fault detection observer design for a polytopic LPV system using the relative degree, International Journal of Applied Mathematics and Computer Science28(1): 83–95, DOI: 10.2478/amcs-2018-0006.10.2478/amcs-2018-0006Open DOISearch in Google Scholar

Zribi, A., Chtourou, M. and Djemal, M. (2016). A systematic determination approach of model’s base using gap metric for nonlinear systems, Journal of Dynamic Systems, Measurement, and Control138(3): 031008.10.1115/1.4032222Search in Google Scholar

eISSN:
2083-8492
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Mathematics, Applied Mathematics