1. bookVolume 23 (2013): Edizione 4 (December 2013)
Dettagli della rivista
License
Formato
Rivista
eISSN
2083-8492
ISSN
1641-876X
Prima pubblicazione
05 Apr 2007
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Open Access

Evolutionary algorithms and fuzzy sets for discovering temporal rules

Pubblicato online: 31 Dec 2013
Volume & Edizione: Volume 23 (2013) - Edizione 4 (December 2013)
Pagine: 855 - 868
Dettagli della rivista
License
Formato
Rivista
eISSN
2083-8492
ISSN
1641-876X
Prima pubblicazione
05 Apr 2007
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese

Agrawal, R., Imielinski, T. and Swami, A. (1993). Mining association rules between sets of items in large databases, Proceedings of the ACM SIGMOD International Conference on Management of Data, Washington, DC, USA, pp. 207-216.Search in Google Scholar

Agrawal, R. and Srikant, R. (1994). Fast algorithms for mining association rules, Proceedings of the 20th International Conference on Very Large Data Bases, Santiago, Chile, pp. 487-499.Search in Google Scholar

Agrawal, R. and Srikant, R. (1995). Mining sequential patterns, Proceedings of the 11th International Conference on Data Engineering, Taipei, Taiwan, pp. 3-14.Search in Google Scholar

Alcalá, R., Alcal´a-Fdez, J., Gacto, M. and Herrera, F. (2007a).Search in Google Scholar

A multi-objective evolutionary algorithm for rule selection and tuning on fuzzy rule-based systems, Proceedings of the IEEE International Fuzzy Systems Conference (FUZZIEEE 2007), London, UK, pp. 1-6.Search in Google Scholar

Alcalá, R., Alcal´a-Fdez, J. and Herrera, F. (2007b). A proposal for the genetic lateral tuning of linguistic fuzzy systems and its interaction with rule selection, IEEE Transactions on Fuzzy Systems 15(4): 616-635.10.1109/TFUZZ.2006.889880Search in Google Scholar

Ale, J.M. and Rossi, G. H. (2000). An approach to discovering temporal association rules, Proceedings of the 2000 ACM Symposium on Applied Computing (SAC’00), Como, Italy, pp. 294-300.Search in Google Scholar

Bayardo, Jr., R.J. and Agrawal, R. (1999). Mining the most interesting rules, Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, pp. 145-154.Search in Google Scholar

Ben Aicha, F., Bouani, F. and Ksouri, M. (2013). A multivariable multiobjective predictive controller, International Journal of Applied Mathematics and Computer Science 23(1): 35-45, DOI: 10.2478/amcs-2013-0004.10.2478/amcs-2013-0004Search in Google Scholar

Carmona, C., Gonz´alez, P., del Jesus, M. and Herrera, F. (2010). NMEEF-SD: Non-dominated multiobjective evolutionary algorithm for extracting fuzzy rules in subgroup discovery, IEEE Transactions on Fuzzy Systems 18(5): 958-970.10.1109/TFUZZ.2010.2060200Search in Google Scholar

Casillas, J., Cord´on, O., del Jesus, M. and Herrera, F. (2005). Genetic tuning of fuzzy rule deep structures preserving interpretability and its interaction with fuzzy rule set reduction, IEEE Transactions on Fuzzy Systems 13(1): 13-29.10.1109/TFUZZ.2004.839670Search in Google Scholar

Chan, K.C.C. and Au, W.-H. (1997). Mining fuzzy association rules, Proceedings of the 6th International Conference on Information and Knowledge Management, Las Vegas, NV, USA, pp. 209-215.Search in Google Scholar

Cordón, O. and Herrera, F. (1997). Identification of linguistic fuzzy models by means of genetic algorithms, in D. Driankov and H. Hellendoorn (Eds.), Fuzzy Model Identification. Selected Approaches, Springer-Verlag, Heidelberg, pp. 215-250.10.1007/978-3-642-60767-7_7Search in Google Scholar

Cordón, O., Herrera, F., Hoffmann, F. and Magdalena, L. (2001). Genetic Fuzzy Systems: Evolutionary Tuning and Learning of Fuzzy Knowledge Bases, Advances in Fuzzy Systems-Applications and Theory, World Scientific, Singapore.10.1142/4177Search in Google Scholar

Deb, K. (2005). Multi-objective optimization, in E.K. Burke and G. Kendall (Eds.), Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, Springer, Berlin, pp. 403-449.10.1007/0-387-28356-0_10Search in Google Scholar

Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation 6(2): 182-197. del Jesus, M.J., G´amez, J.A., Gonz´alez, P. and Puerta, J.M. (2011). On the discovery of association rules by means of evolutionary algorithms, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 1(5): 397-415.Search in Google Scholar

Dubois, D. and Prade, H.M. (1980). Fuzzy Sets and Systems: Theory and Applications, Academic Press, London.Search in Google Scholar

Freitas, A.A. (2002). Data Mining and Knowledge Discovery with Evolutionary Algorithms, Springer-Verlag, Berlin/Heidelberg.10.1007/978-3-662-04923-5Search in Google Scholar

Gacto, M., Alcal´a, R. and Herrera, F. (2011). Interpretability of linguistic fuzzy rule-based systems: An overview of interpretability measures, Information Sciences 181(20): 4340-4360.10.1016/j.ins.2011.02.021Search in Google Scholar

Ghosh, A. and Nath, B. (2004). Multi-objective rule mining using genetic algorithms, Information Sciences 163(1-3): 123-133.10.1016/j.ins.2003.03.021Search in Google Scholar

Han, J., Gong, W. and Yin, Y. (1998). Mining segment-wise periodic patterns in time-related databases, Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, pp. 214-218.Search in Google Scholar

Herrera, F. (2008). Genetic fuzzy systems: Taxonomy, current research trends and prospects, Evolutionary Intelligence 1(1): 27-46.10.1007/s12065-007-0001-5Search in Google Scholar

Homaifar, A. and McCormick, E. (1995). Simultaneous design of membership functions and rule sets for fuzzy controllers using genetic algorithms, IEEE Transactions on Fuzzy Systems 3(2): 129-139.10.1109/91.388168Search in Google Scholar

Hong, T.-P., Chen, C.-H., Lee, Y.-C. and Wu, Y.-L. (2008). Genetic-fuzzy data mining with divide-and-conquer strategy, IEEE Transactions on Evolutionary Computation 12(2): 252-265.10.1109/TEVC.2007.900992Search in Google Scholar

Hong, T.-P., Kuo, C.-S. and Chi, S.-C. (2001). Trade-off between computation time and number of rules for fuzzy mining from quantitative data, International Journal of Uncertainty, Fuzziness & Knowledge-Based Systems 9(5): 587-604.10.1142/S0218488501001071Search in Google Scholar

Hong, T.-P. and Lee, Y.-C. (2008). An overview of mining fuzzy association rules, in H. Bustince, F. Herrera and J.Montero (Eds.), Fuzzy Sets and Their Extensions: Representation, Aggregation and Models, Studies in Fuzziness and Soft Computing, Vol. 220, Springer, Berlin/Heidelberg, pp. 397-410.10.1007/978-3-540-73723-0_20Search in Google Scholar

Hopgood, A. (2012). Intelligent Systems for Engineers and Scientists, 3rd edn, CRC Press, Boca Raton, FL.Search in Google Scholar

Kaya, M. (2009). MOGAMOD: Multi-objective genetic algorithm for motif discovery, Expert Systems with Applications 36(2, Part 1): 1039-1047.10.1016/j.eswa.2007.11.008Search in Google Scholar

Kaya, M. and Alhajj, R. (2003). Facilitating fuzzy association rules mining by using multi-objective genetic algorithms for automated clustering, Proceedings of the 3rd IEEE International Conference on Data Mining, Melbourne, FL, USA, pp. 561-564.Search in Google Scholar

Klir, G.J., Clair, U.H.S. and Yuan, B. (1997). Fuzzy Set Theory: Foundations and Applications, Prentice Hall, Upper Saddle River, NJ.Search in Google Scholar

Kuok, C.M., Fu, A. and Wong, M.H. (1998). Mining fuzzy association rules in databases, SIGMOD Record 27(1): 41-46.10.1145/273244.273257Search in Google Scholar

Laxman, S. and Sastry, P. S. (2006). A survey of temporal data mining, S¯adhan¯a 31(2): 173-198.10.1007/BF02719780Search in Google Scholar

Lee, W.-J. and Lee, S.-J. (2004). Discovery of fuzzy temporal association rules, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 34(6): 111-118.10.1109/TSMCB.2004.835352Search in Google Scholar

Leonard, D. (2005). After Katrina: Crisis management, the only lifeline was the Wal-Mart, FORTUNE Magazine (October 3).Search in Google Scholar

Li, Y., Ning, P., Wang, X. S. and Jajodia, S. (2003). Discovering calendar-based temporal association rules, Data & Knowledge Engineering 44(2): 193-218.10.1016/S0169-023X(02)00135-0Search in Google Scholar

Lozano, M., Herrera, F., Krasnogor, N. and Molina, D. (2004). Real-coded memetic algorithms with crossover hill-climbing, Evolutionary Computation 12(3): 273-302.10.1162/1063656041774983Search in Google Scholar

Maeda, A., Ashida, H., Taniguchi, Y. and Takahashi, Y. (1995). Data mining system using fuzzy rule induction, Proceedings of the 1995 IEEE International Conference on Fuzzy Systems, Yokohama, Japan, Vol. 5, pp. 45-46.Search in Google Scholar

Martínez-Ballesteros, M., Mart´ınez-´Alvarez, F., Troncoso, A. and Riquelme, J. (2011). An evolutionary algorithm to discover quantitative association rules in multidimensional time series, Soft Computing-A Fusion of Foundations, Methodologies and Applications 15(10): 1-20.10.1007/s00500-011-0705-4Search in Google Scholar

Mata, J., Alvarez, J.L. and Riquelme, J.C. (2002). An evolutionary algorithm to discover numeric association rules, Proceedings of the 2002 ACM Symposium on Applied Computing, Madrid, Spain, pp. 590-594.Search in Google Scholar

Matthews, S.G., Gongora, M.A. and Hopgood, A.A. (2010). Evolving temporal association rules with genetic algorithms, in M. Bramer, M. Petridis and A. Hopgood (Eds.), Research and Development in Intelligent Systems XXVII, Springer, London, pp. 107-120.Search in Google Scholar

Matthews, S.G., Gongora, M.A. and Hopgood, A.A. (2011a). Evolving temporal fuzzy association rules from quantitative data with a multi-objective evolutionary algorithm, in E. Corchado, M. Kurzynski and M. Wozniak (Eds.), Hybrid Artificial Intelligent Systems (Proceedings of HAIS 2011), Lecture Notes in Computer Science, Vol. 6678, Springer, Berlin/Heidelberg, pp. 198-205.Search in Google Scholar

Matthews, S.G., Gongora, M.A. and Hopgood, A.A. (2011b). Evolving temporal fuzzy itemsets from quantitative data with a multi-objective evolutionary algorithm, IEEE 5th International Workshop on Genetic and Evolutionary Fuzzy Systems (GEFS 2011), Paris, France, pp. 9-16.10.1109/GEFS.2011.5949497Search in Google Scholar

Miller, R.J. and Yang, Y. (1997). Association rules over interval data, ACM SIGMOD Record 26(2): 452-461.10.1145/253262.253361Search in Google Scholar

Mitsa, T. (2010). Temporal Data Mining, CRC Press Online, Boca Raton, FL. ¨O zden, B., Ramaswamy, S. and Silberschatz, A. (1998). Cyclic association rules, Proceedings of the 1914 International Conference on Data Engineering, Orlando, FL, USA, pp. 412-421.Search in Google Scholar

Piatetsky-Shapiro, G. (1990). Knowledge discovery in real databases: A report on the IJCAI-89 workshop, AI Magazine 11(4): 68-70.Search in Google Scholar

Saleh, B. and Masseglia, F. (2010). Discovering frequent behaviors: Time is an essential element of the context, Knowledge and Information Systems 28(2): 1-21.10.1007/s10115-010-0361-5Search in Google Scholar

Srikant, R. and Agrawal, R. (1996). Mining quantitative association rules in large relational tables, Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data, Montreal, Quebec, Canada, pp. 1-12.Search in Google Scholar

Venturini, G. (1993). SIA: A supervised inductive algorithm with genetic search for learning attributes based concepts, Proceedings of the European Conference on Machine Learning (ECML-93), Vienna, Austria, pp. 280-296.Search in Google Scholar

Weng, C.-H. (2011). Mining fuzzy specific rare itemsets for education data, Knowledge-Based Systems 24(5): 697-708.10.1016/j.knosys.2011.02.010Search in Google Scholar

Yoo, J.S. and Shekhar, S. (2009). Similarity-profiled temporal association mining, IEEE Transactions on Knowledge and Data Engineering 21(8): 1147-1161.10.1109/TKDE.2008.185Search in Google Scholar

Zadeh, L.A. (1965). Fuzzy sets, Information Control 8(3): 338-353.10.1016/S0019-9958(65)90241-XSearch in Google Scholar

Zadeh, L.A. (1975). The concept of a linguistic variable and its application to approximate reasoning, Parts I, II, III, Information Sciences 8-9(3,4,1): 199-249, 301-357, 43-80. 10.1016/0020-0255(75)90046-8Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo